Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(49): 19791-19803, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38031933

ABSTRACT

In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of Bifidobacterium breve H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides. EPS-1 with an average molecular weight of 3.99 × 104 Da was mainly composed of mannose (89.65%) and glucose (5.84%). The backbone of EPS-1 was →2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ simultaneously containing two kinds of branched chains (α-d-Manp-(1→3)-α-d-Manp-(1→ and α-d-Manp-(1→). Besides, EPS-1 had a triple-helical conformation and exhibited excellent thermal stability. Moreover, the immunomodulatory activity of EPS-1 was evaluated by RAW 264.7 cells. Results indicated that EPS-1 significantly enhanced the viability of RAW 264.7 cells. EPS-1 could also be recognized by toll-like receptor 4, thereby activating the nuclear factors-κB (NF-κB) signaling pathway, promoting phosphorylation of related nuclear transcription factors, improving cell phagocytic activity, and promoting the secretion of NO, IL-6, IL-1ß, and TNF-α. Thus, EPS-1 could activate the TLR4-NF-κB signaling pathway to emerge immunomodulatory activity on macrophages. The above results indicate that EPS-1 can serve as a potential immune-stimulating polysaccharide.


Subject(s)
Bifidobacterium breve , Mannose , Animals , Mice , Mannose/metabolism , Bifidobacterium breve/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Polysaccharides/chemistry , Macrophages/metabolism , RAW 264.7 Cells , Molecular Weight
2.
Nutrients ; 14(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145047

ABSTRACT

This study was designed to explore the different intestinal barrier repair mechanisms of Bifidobacterium breve (B. breve) H4-2 and H9-3 with different exopolysaccharide (EPS) production in mice with colitis. The lipopolysaccharide (LPS)-induced IEC-6 cell inflammation model and dextran sulphate sodium (DSS)-induced mice colitis model were used. Histopathological changes, epithelial barrier integrity, short-chain fatty acid (SCFA) content, cytokine levels, NF-κB expression level, and intestinal flora were analyzed to evaluate the role of B. breve in alleviating colitis. Cell experiments indicated that both B. breve strains could regulate cytokine levels. In vivo experiments confirmed that oral administration of B. breve H4-2 and B. breve H9-3 significantly increased the expression of mucin, occludin, claudin-1, ZO-1, decreased the levels of IL-6, TNF-α, IL-1ß and increased IL-10. Both strains of B. breve also inhibited the expression of the NF-κB signaling pathway. Moreover, B. breve H4-2 and H9-3 intervention significantly increased the levels of SCFAs, reduced the abundance of Proteobacteria and Bacteroidea, and increased the abundance of Muribaculaceae. These results demonstrate that EPS-producing B. breve strains H4-2 and H9-3 can regulate the physical, immune, and microbial barrier to repair the intestinal damage caused by DSS in mice. Of the two strains, H4-2 had a higher EPS output and was more effective at repair than H9-3. These results will provide insights useful for clinical applications and the development of probiotic products for the treatment of colitis.


Subject(s)
Bifidobacterium breve , Colitis , Gastrointestinal Microbiome , Animals , Bifidobacterium breve/metabolism , Claudin-1/metabolism , Colitis/chemically induced , Colitis/therapy , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Interleukin-10/metabolism , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mucins/metabolism , NF-kappa B/metabolism , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...