Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 202, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684694

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS: We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1ß and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION: These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.


Subject(s)
CADASIL , Gastrointestinal Microbiome , Mental Disorders , Animals , Mice , Cytokines , gamma-Aminobutyric Acid
2.
Proc Natl Acad Sci U S A ; 120(4): e2219679120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649429

ABSTRACT

The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Coinfection , Animals , Mice , Anti-Bacterial Agents/pharmacology , Micelles , Staphylococcus aureus , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Biofilms , Microbial Sensitivity Tests , Pseudomonas aeruginosa
3.
Front Microbiol ; 13: 879207, 2022.
Article in English | MEDLINE | ID: mdl-35875544

ABSTRACT

The gut microbiome plays a pivotal role in maintaining the health of the hosts; however, there is accumulating evidence that certain bacteria in the host, termed pathobionts, play roles in the progression of diseases. Although antibiotics can be used to eradicate unwanted bacteria, the side effects of antibiotic treatment lead to a great need for more targeted antimicrobial agents as tools to modulate the microbiome more precisely. Herein, we reviewed narrow-spectrum antibiotics naturally made by plants and microorganisms, followed by more targeted antibiotic agents including synthetic peptides, phage, and targeted drug delivery systems, from the perspective of using them as potential tools for modulating the gut microbiome for favorable effects on the health of the host. Given the emerging discoveries on pathobionts and the increasing knowledge on targeted antimicrobial agents reviewed in this article, we anticipate targeted antimicrobial agents will emerge as a new generation of a drug to treat microbiome-involved diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...