Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174064, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38889812

ABSTRACT

Microplastics (MPs) have drawn exponential attention as anthropogenic pollutants, which have invaded every corner of planet. Seamounts are prominent features of the deep-sea topography, acting as breeding ground for marine animal calves and hotspots of pelagic biodiversity, yet MPs pollution in seamounts is scarcely studied. We investigated the MPs load in the whole vertical profile of seamount ambient water in the Subtropical Northwest Pacific Ocean. Based on focal plane array Fourier Transform Infrared spectrometry, MPs were detected in all layers, and varied from 0.9 to 3.8 items L-1, PP and PE were dominant, PA and PET tended to gather at the seamount summit. With depth increasing, small MPs (20-50 µm) were dominant, and MPs surface roughness including crack, hole, and biofouling showed an increase. Three plastic-degrading bacteria were noted in the layers around the seamount, indicating that the seamount community may accelerate MPs aging and further migration. Our work first unveiled the MPs occurrence in the whole vertical profile of the seamount. It reveals that ocean MPs migration and degradation are significantly affected by the unique topography and biotopes of the seamount.

2.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324752

ABSTRACT

Mercury (Hg) isotopes provide a useful tool to understand Hg sources and processes in the environment. The Hg isotopic composition of seawater remains poorly constrained due to the lack of an efficient method to process large volumes of low-Hg-concentration seawater samples. Here, we develop a continuous flow-double purge and trap device for the in situ preconcentration of Hg in seawater. This method yielded a good Hg recovery of 91.7 ± 3.3% (n = 4, 1SD) for spiked seawater samples and gave reasonably similar Hg isotope ratios of NIST 8610, indicating a limited matrix effect and limited Hg isotope fractionation during processing of seawater. NIST 8610 δ202Hg (-0.55 ± 0.09‰, n = 4, 1SD) and Δ199Hg (0.07 ± 0.02‰, n = 4, 1SD) were similar to previously published data. The method was successfully applied to seawater collected from the Xiamen Bay and the South China Sea. The seawater samples showed a Hg recovery of 91.6 ± 5.4% (n = 12, 1SD). Seawater Δ199Hg (-0.04 ± 0.05‰, n = 7, 1SD) in the Xiamen Bay was different from seawater Δ199Hg (0.05 ± 0.07‰, n = 5, 1SD) in the South China Sea, which implies distinct Hg sources to coastal and open ocean areas and highlights the robustness of our method in understanding the Hg isotopic composition of seawater.

3.
J Hazard Mater ; 469: 133768, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38422729

ABSTRACT

Microplastics (MPs) act as carriers for organic pollutants (e.g. antibiotics) and microorganisms (e.g. bacteria) in waters, leading to the proliferation of antibiotic resistance genes. Moreover, the antibiotics adsorbed on MPs may exacerbate this process. For further research, it is necessary to understand the types and amounts of antibiotics adsorbed on MPs. However, due to the heavy work of MPs collection and sample pretreatment, there is a lack of analytical methods and relevant data. In this study, an in-tube solid phase microextraction (IT-SPME) on-line coupled to HPLC-MS/MS method based on amorphous precursor polymer of three-dimensional covalent organic frameworks/monolith-based composite adsorbent was developed, which could efficiently capture, enrich and analyze tetracycline (TCs) antibiotics. Under the optimal extraction parameters, the developed method was capable of detecting TCs at levels as low as 0.48-1.76 pg. This method was applied to analyze the TCs adsorbed on MPs of different particle sizes in mariculture water for the first time, requiring a minimum amount of MPs of only 1 mg. Furthermore, it was observed that there could be an antagonistic relationship between algal biofilm and TCs loaded on MPs. This approach could open up new possibilities for analyzing pollutants on MPs and support deeper research on MPs.


Subject(s)
Solid Phase Microextraction , Water Pollutants, Chemical , Solid Phase Microextraction/methods , Water , Microplastics , Plastics , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Anti-Bacterial Agents , Water Pollutants, Chemical/analysis , Tetracyclines
4.
Environ Sci Pollut Res Int ; 30(40): 93242-93254, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37507564

ABSTRACT

Epidemiological studies in recent years have identified an association between exposure to air pollutants and acute myocardial infarction (AMI); however, the association between short-term ozone (O3) exposure and AMI hospitalization remains unclear, particularly in developing countries. Therefore, this study collected information on 24,489 AMI patients, including daily air pollutant and meteorological data in Henan, China, between 2016 and 2021. A distributed lagged nonlinear model combined with a Poisson regression model was used to estimate the nonlinear lagged effect of O3 on AMI hospitalizations. We also quantified the effects of O3 on the number of AMI hospitalizations, hospitalization days, and hospitalization costs. The results showed that single- and dual-pollution models of O3 at lag0, lag1, and lag (01-07) were risk factors for AMI hospitalizations, with the most significant effect at lag03 (RR = 1.132, 95% CI:1.083-1.182). Further studies showed that males, younger people (15-64 years), warm seasons, and long sunshine duration were more susceptible to O3. Hospitalizations attributable to O3 during the study period accounted for 11.66% of the total hospitalizations, corresponding to 2856 patients, 33,492 hospital days, and 90 million RMB. Maintaining O3 at 10-130 µg/m3 can prevent hundreds of AMI hospitalizations and save millions of RMB per year in Henan, China. In conclusion, we found that short-term exposure to O3 was significantly associated with an increased risk of hospitalization for AMI in Henan, China, and that further reductions in ambient O3 levels may have substantial health and economic benefits for patients and local healthcare facilities.


Subject(s)
Air Pollutants , Air Pollution , Myocardial Infarction , Ozone , Male , Humans , Air Pollution/analysis , Particulate Matter/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Ozone/analysis , Hospitalization , Myocardial Infarction/epidemiology , Myocardial Infarction/chemically induced , China/epidemiology
5.
Biochem Pharmacol ; 213: 115594, 2023 07.
Article in English | MEDLINE | ID: mdl-37207700

ABSTRACT

Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Polycomb Repressive Complex 2 , Chromatin , Endothelial Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Humans
6.
Anal Bioanal Chem ; 414(19): 5869-5876, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35641644

ABSTRACT

A simple resorcinol method to determine nitrate (NO3-) in seawater using a microplate reader with a 48-well plate was established. The method involved the nitration of resorcinol in sulfuric acid to form a pink product that was detected at 505 nm. Reagent concentrations were optimized, and the effect of salinity on NO3- determination was investigated. The detection limit of this method was 0.8 µM, while the upper limit of the linear range was 100 µM. The recoveries ranged from 91.5 to 109.7% for spiked seawater samples with different salinities. The proposed method was compared with two reference methods, and the results revealed a good correlation. Compared to conventional methods that require the preparation of reactants, the proposed method used aqueous solutions as reagents for the reaction, which was simpler and more convenient. Compared to the methods that used organic solvents for the direct determination of NO3-, the proposed method was suitable for estuarine and coastal water samples with large salinity variations. All results indicated that the proposed method can satisfy the requirements of laboratory analysis and demonstrate high application potential for use in field determination.


Subject(s)
Nitrates , Seawater , Nitrogen Oxides , Resorcinols/analysis , Spectrophotometry/methods , Water
7.
Appl Opt ; 60(7): 1916-1923, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33690281

ABSTRACT

Multi-wavelength radiometric thermometry has a wide application prospect in many fields. However, due to unknown emissivity, the data processing algorithm remains a difficult problem. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is proposed to inverse true temperature and spectral emissivity without assuming the emissivity model. The BFGS algorithm can automatically identify the emissivity models of different trends. These simulation results show that given different initial emissivity has no significant influence on the inverse temperature and emissivity. Then, we select 0.5 as the initial emissivity and carry out the simulation experiments at 800 and 900 K, respectively. The maximum absolute error of temperature is less than 3.5 K and the computation time is less than 0.2 s. Thus, the algorithm has high precision and efficiency. Finally, the verification experiment indicates that the BFGS algorithm is effective and reliable. The proposed method can be applied to real-time temperature measurement in many industrial processes.

8.
Environ Sci Pollut Res Int ; 28(18): 22716-22728, 2021 May.
Article in English | MEDLINE | ID: mdl-33423193

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) in the sea area surrounding a densely populated tourist city in southeastern China were investigated. In total, 32 PPCP pollutants classified into 23 categories were detected. Different spatial distribution patterns of PPCPs indicated possible contamination from runoff and multiple local sources. The labile-to-conservative ratios of PPCPs showed the influence of untreated domestic sewage. In addition, increased concentrations of ciprofloxacin, enrofloxacin, and erythromycin around aquaculture farms imply that aquaculture cannot be neglected as a source. The concentrations of oxytetracycline, ranitidine, ciprofloxacin, miconazole, and sulfamethizole were higher in the wet season than those in the dry season, and the difference in pharmaceutical consumption was suspected to be the main driving factor of this seasonal variation. The risk quotients calculated with the maximum concentrations of miconazole, triclosan, dehydronifedipine, and triclocarban exceeded 0.1, indicating potential moderate or high risks. Antibacterial agents in daily chemicals and azole broad-spectrum antifungals were associated with the highest risks in this study; this might be another significant pollution characteristic in the sea area around this subtropical tourist city.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Water Pollutants, Chemical , China , Cities , Cosmetics/analysis , Environmental Monitoring , Risk Assessment , Seawater , Water Pollutants, Chemical/analysis
9.
Environ Pollut ; 258: 113756, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31855673

ABSTRACT

China is the largest plastic consumer in the world. Despite its plastic waste import ban in 2017, this populous economy inevitably generates a large amount of waste, including plastic waste, a considerable part of which has become marine litter. Data from the 2018 National Coastal Cleanup and Monitoring Project, the largest beach litter monitoring activities using the citizen science approach in China, have been retrieved and analyzed to understand spatial patterns, composition, and original usage of marine litter. Within this project, 24 beaches were surveyed every two months. As a result, the mean density was 3.85 ± 5.39 items m-2, much higher than that reported by previous studies in China. There were great differences in the spatial distribution of litter. The highest densities appeared in the runoff-affected area of the Yangtze River, which was another difference from previous studies. Low-density, easy-to-transport foamed plastics were the major contributor to marine litter in these areas. Along China's coast, approximately 90% of litter was from land-based sources, and over half of that originated from domestic sources. Including foamed plastic products, plastic litter with low recycling value dominated. Both natural and human factors influencing the spatiotemporal distribution and composition of litter are discussed. Socioeconomic factors, such as the lifestyle and consumption levels of citizens and local waste management systems, are possible explanations for the low-value characteristic of marine litter. The deviation between previous data and citizen science data in this study may be caused by many factors. Based on the discussion on these factors, some suggestions for citizen science research in China are also put forward.


Subject(s)
Bathing Beaches , Environmental Monitoring , Waste Products , China , Citizen Science , Plastics
10.
Sci Total Environ ; 676: 278-289, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31048159

ABSTRACT

Marine debris characterization is fundamental for developing policies aiming at ending the flow of marine debris at the source. China has the largest coastal population in the world. For this emerging economy, the sources of debris might be different from those in regions at different developmental stages. As a typical coastal tourist city and a special economic zone in East China, there are multiple sources of marine debris continuously produced around Xiamen. Marine debris characterization here could provide insights into regulatory measures. Therefore, the abundance and composition of marine debris around Xiamen were investigated. Average densities of floating, beached, benthic macro-debris and floating microplastics (0.5 mm - 5 mm) were 3963 ±â€¯2027 items km-2, 0.13 ±â€¯0.08 items m-2, 20,274 ±â€¯15,873 items km-2 and 36,455 ±â€¯33,935 items km-2, respectively. Based on the Clean Coast Indexes, the beaches investigated were supposed to be "very clean" most of the time (73.2% ±â€¯34.9%). Wastes with low value for recycling/reuse, such as grocery bags, ropes, and foams, were the main items of marine debris in the study area. Both domestic sources from the upstream and local fishing/aquaculture activities significantly contributed to marine debris. Obvious regional differences in benthic debris categories could be explained by both natural factors and the rural-urban gap in economic levels, waste-management strategies and infrastructure. These might be common features in this emerging market and densely populated economy. The findings provide insights into the sources of mismanaged waste around this tourist city and some neglected deficiencies in China's current solid waste management system.

11.
Chemosphere ; 225: 735-744, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903847

ABSTRACT

People are increasingly aware of ubiquitous microplastic (MP) pollution in the world's ocean due to its far-reaching harmful impacts on marine ecosystem and potential hazards to human health, yet surprisingly comparatively limited studies about the abundance, source, transport, and fate of MPs in the Northwestern Pacific Ocean are available. We conducted the field survey of MPs pollution at the surface of the Northwestern Pacific Ocean between August 25 and September 26, 2017. MPs were collected from 18 sampling stations in the Northwestern Pacific Ocean using a manta trawl net with a mesh size of ∼330 µm and a rectangular net opening of 0.45 × 1 m. The abundance, shape, color, size, chemical composition, and surface morphology were characterized using light microscopy, µ-Raman spectroscopy, and scanning electron microscopy (SEM). The results show surface MPs at concentrations ranging over two orders of magnitude (6.4 × 102 to 4.2 × 104 particles km-2) and a mean abundance of 1.0 × 104 particles km-2. The most concentrated MPs were found at XTJ3-9, which may be associated with the convergence of surface currents collectively affected by the Kuroshio and its extension, adjacent eddies, and flow regimes. Polyethylene accounts for 57.8% of enumerated MPs, followed by polypropylene (36.0%) and nylon (3.4%). Pellets, sheets, lines, and films are major forms which may be linked to the breakdown of larger particles, aging processes, and movement over long distances by prevailing currents. Four possible MPs migration pathways were proposed based on the source-specific distribution, chemical fingerprints, size distribution patterns, and the observed physical oceanographic parameters.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Plastics/adverse effects , Pacific Ocean , Plastics/chemistry , Prevalence
12.
Sci Total Environ ; 650(Pt 2): 1913-1922, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30286357

ABSTRACT

Prevalence of microplastics (MPs) throughout the world's oceans has raised growing concerns due to its detrimental effects on the environment and living organisms. Most recent studies of MPs, however, have focused on the estuaries and coastal regions. There is a lack of study of MPs pollution in the open ocean. In the present study, we conducted field observations to investigate the abundance, spatial distribution, and characteristics (composite, size, color, shape and surface morphology) of MPs at the surface of the Northwestern Pacific Ocean. Samples of MPs were collected at 18 field stations in the Northwestern Pacific Ocean using a surface manta trawl with a mesh size of ~330 µm and width of 1 m from August 25 to September 26, 2017. The MPs were characterized using light microscopy, Micro-Raman spectroscopy, and scanning electron microscopy (SEM). Our field survey results indicate the ubiquity of MPs at all stations with an abundance from 6.4 × 102 items km-2 to 4.2 × 104 items km-2 and an average abundance of 1.0 × 104 items km-2. The Micro-Raman spectroscopic analysis of the MPs samples collected during our field survey indicates that the dominant MPs is polyethylene (57.8%), followed by polypropylene (36.0%) and nylon (3.4%). The individual chemical compositions of MPs from the stations within the latitude range 123-146°E are comparable with each other, with PE being the dominating composition. Similar chemical fingerprints were observed at these field stations, suggesting that the MPs originated from similar sources. In contrast, the major MPs at the field stations adjacent to Japan is polypropylene, which may originate from the nearby land along the coast of Japan. Physical oceanography parameters were also collected at these stations. The spatial distribution of MPs is largely attributed to the combined effects of flow pattern, adjacent ocean circulation eddies, the Kuroshio and Kuroshio Extension system.

SELECTION OF CITATIONS
SEARCH DETAIL
...