Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Res Sq ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39315260

ABSTRACT

Background Bone morphogenetic protein (BMP) signaling cascade is a phylogenetically conserved stem cell regulator that is aberrantly expressed in non-small cell lung cancer (NSLC) and leukemias. BMP signaling negatively regulates mitochondrial bioenergetics in lung cancer cells. The impact of inhibiting BMP signaling on mitochondrial bioenergetics and the effect this has on the survival of NSLC and leukemia cells are not known. Methods Utilizing the BMP type 2 receptor (BMPR2) JL189, BMPR2 knockout (KO) in cancer cells, and BMP loss of function mutants in C elegans , we determined the effects of BMPR2 inhibition (BMPR2i) on TCA cycle metabolic intermediates, mitochondrial respiration, and the regulation of mitochondrial superoxide anion (SOA) and Ca ++ levels. We also examined whether BMPR2i altered the threshold cancer therapeutics induce cell death in NSLC and leukemia cell lines. KO of the mitochondria uniporter (MCU) was used to determine the mechanism BMPR2i regulates the uptake of Ca ++ into the mitochondria, mitochondrial bioenergetics, and cell death. Results BMPR2i increases mtCa ++ levels and enhances mitochondrial bioenergetics in both NSLC and leukemia cell lines that is conserved in C elegans. BMPR2i induced increase in mtCa ++ levels is regulated through the MCU, effecting mitochondria mass and cell survival. BMPR2i synergistically induced cell death when combined with BCL-2 inhibitors or microtubule targeting agents in both NSLC and leukemia cells. Cell death is caused by synergistic increase in mitochondrial ROS and Ca ++ levels. BMPR2i enhances Ca ++ uptake into the mitochondria induced by reactive oxygen species (ROS) produced by cancer therapeutics. Both acute myeloid leukemia (AML) and T-cell lymphoblastic leukemia cells lines were more responsive to the JL189 alone and when combined with venetoclax or navitoclax compared to NSLC.

2.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997257

ABSTRACT

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.


Subject(s)
Glucosephosphate Dehydrogenase , Homeostasis , Lung Neoplasms , NADP , Oxidation-Reduction , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins p21(ras) , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/genetics , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , NADP/metabolism , Mice , Humans , Cell Line, Tumor , Lipogenesis/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , Pentose Phosphate Pathway/genetics , AMP-Activated Protein Kinases/metabolism , Male , Mice, Knockout , Female , Mutation
3.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853873

ABSTRACT

Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief: High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights: Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival.

4.
JAMA Netw Open ; 7(5): e2413508, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38805222

ABSTRACT

Importance: Understanding the effect of antenatal magnesium sulfate (MgSO4) treatment on functional connectivity will help elucidate the mechanism by which it reduces the risk of cerebral palsy and death. Objective: To determine whether MgSO4 administered to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks is associated with increased functional connectivity and measures of functional segregation and integration in infants at term-equivalent age, possibly reflecting a protective mechanism of MgSO4. Design, Setting, and Participants: This cohort study was nested within a randomized placebo-controlled trial performed across 24 tertiary maternity hospitals. Participants included infants born to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks who participated in the MAGENTA (Magnesium Sulphate at 30 to 34 Weeks' Gestational Age) trial and underwent magnetic resonance imaging (MRI) at term-equivalent age. Ineligibility criteria included illness precluding MRI, congenital or genetic disorders likely to affect brain structure, and living more than 1 hour from the MRI center. One hundred and fourteen of 159 eligible infants were excluded due to incomplete or motion-corrupted MRI. Recruitment occurred between October 22, 2014, and October 25, 2017. Participants were followed up to 2 years of age. Analysis was performed from February 1, 2021, to February 27, 2024. Observers were blind to patient groupings during data collection and processing. Exposures: Women received 4 g of MgSO4 or isotonic sodium chloride solution given intravenously over 30 minutes. Main Outcomes and Measures: Prior to data collection, it was hypothesized that infants who were exposed to MgSO4 would show enhanced functional connectivity compared with infants who were not exposed. Results: A total of 45 infants were included in the analysis: 24 receiving MgSO4 treatment and 21 receiving placebo; 23 (51.1%) were female and 22 (48.9%) were male; and the median gestational age at scan was 40.0 (IQR, 39.1-41.1) weeks. Treatment with MgSO4 was associated with greater voxelwise functional connectivity in the temporal and occipital lobes and deep gray matter structures and with significantly greater clustering coefficients (Hedge g, 0.47 [95% CI, -0.13 to 1.07]), transitivity (Hedge g, 0.51 [95% CI, -0.10 to 1.11]), local efficiency (Hedge g, 0.40 [95% CI, -0.20 to 0.99]), and global efficiency (Hedge g, 0.31 [95% CI, -0.29 to 0.90]), representing enhanced functional segregation and integration. Conclusions and Relevance: In this cohort study, infants exposed to MgSO4 had greater voxelwise functional connectivity and functional segregation, consistent with increased brain maturation. Enhanced functional connectivity is a possible mechanism by which MgSO4 protects against cerebral palsy and death.


Subject(s)
Magnesium Sulfate , Magnetic Resonance Imaging , Humans , Magnesium Sulfate/pharmacology , Magnesium Sulfate/therapeutic use , Female , Pregnancy , Infant, Newborn , Male , Adult , Gestational Age , Cohort Studies , Premature Birth , Infant , Brain/drug effects , Brain/diagnostic imaging , Prenatal Care/methods , Cerebral Palsy/prevention & control
5.
Article in English | MEDLINE | ID: mdl-38253423

ABSTRACT

Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.


Subject(s)
Autophagy , Neoplasms , Tumor Microenvironment , Humans , Autophagy/physiology , Neoplasms/pathology , Neoplasms/immunology , Animals
6.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873106

ABSTRACT

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NAPDH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer model, we show that ablation of G6PD significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;p53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics revealed that G6PD ablation significantly impaired NADPH generation, redox balance and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation caused p53 activation that suppressed tumor growth. As tumor progressed, G6PD-deficient KL tumors increased an alternative NADPH source, serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.

7.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745600

ABSTRACT

Tumor cells rely on increased glycolytic capacity to promote cell growth and progression. While glycolysis is known to be upregulated in the majority of triple negative (TNBC) or basal-like subtype breast cancers, the mechanism remains unclear. Here, we used integrative genomic analyses to identify a subset of basal-like tumors characterized by increased expression of the oncogenic transcription factor SOX4 and its co-factor the SWI/SNF ATPase SMARCA4. These tumors are defined by unique gene expression programs that correspond with increased tumor proliferation and activation of key metabolic pathways, including glycolysis. Mechanistically, we demonstrate that the SOX4-SMARCA4 complex mediates glycolysis through direct transcriptional regulation of Hexokinase 2 (HK2) and that aberrant HK2 expression and altered glycolytic capacity are required to mediate SOX4-SMARCA4-dependent cell growth. Collectively, we have defined the SOX4-SMARCA4-HK2 signaling axis in basal-like breast tumors and established that this axis promotes metabolic reprogramming which is required to maintain tumor cell growth.

8.
Clin Transl Med ; 13(6): e1298, 2023 06.
Article in English | MEDLINE | ID: mdl-37317665

ABSTRACT

BACKGROUND: Differentiated thyroid cancer (DTC) affects thousands of lives worldwide each year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) quality of life and might be unnecessary in indolent DTC cases. On the other hand, the lack of biomarkers indicating a potential metastatic thyroid cancer imposes an additional challenge to managing and treating patients with this disease. AIM: The presented clinical setting highlights the unmet need for a precise molecular diagnosis of DTC and potential metastatic disease, which should dictate appropriate therapy. MATERIALS AND METHODS: In this article, we present a differential multi-omics model approach, including metabolomics, genomics, and bioinformatic models, to distinguish normal glands from thyroid tumours. Additionally, we are proposing biomarkers that could indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. RESULTS: Normal and tumour thyroid tissue from DTC patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumour cells. The consistency of the DTC metabolic profile allowed us to build a bioinformatic classification model capable of clearly distinguishing normal from tumor thyroid tissues, which might help diagnose thyroid cancer. Moreover, based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intra-tumour heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. DISCUSSION: Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. CONCLUSIONS: Well-designed, prospective translational clinical trials will ultimately show the value of this integrated multi-omics approach and early diagnosis of DTC and potential metastatic PTC.


Subject(s)
Adenocarcinoma , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Prospective Studies , Quality of Life , Telomere Shortening , Telomere , Neoplasm Recurrence, Local , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics
9.
Oncogene ; 42(27): 2183-2194, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258742

ABSTRACT

The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mice , Humans , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/pathology , Genes, ras , Tumor Microenvironment/genetics
10.
medRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945575

ABSTRACT

Differentiated thyroid cancer (DTC) affects thousands of lives worldwide every year. Typically, DTC is a treatable disease with a good prognosis. Yet, some patients are subjected to partial or total thyroidectomy and radioiodine therapy to prevent local disease recurrence and metastasis. Unfortunately, thyroidectomy and/or radioiodine therapy often worsen(s) the quality of life and might be unnecessary in indolent DTC cases. This clinical setting highlights the unmet need for a precise molecular diagnosis of DTC, which should dictate appropriate therapy. Here we propose a differential multi-omics model approach to distinguish normal gland from thyroid tumor and to indicate potential metastatic diseases in papillary thyroid cancer (PTC), a sub-class of DTC. Based on PTC patient samples, our data suggest that elevated nuclear and mitochondrial DNA mutational burden, intratumor heterogeneity, shortened telomere length, and altered metabolic profile reflect the potential for metastatic disease. Specifically, normal and tumor thyroid tissues from these patients had a distinct yet well-defined metabolic profile with high levels of anabolic metabolites and/or other metabolites associated with the energy maintenance of tumor cells. Altogether, this work indicates that a differential and integrated multi-omics approach might improve DTC management, perhaps preventing unnecessary thyroid gland removal and/or radioiodine therapy. Well-designed, prospective translational clinical trials will ultimately show the value of this targeted molecular approach. TRANSLATIONAL RELEVANCE: In this article, we propose a new integrated metabolic, genomic, and cytopathologic methods to diagnose Differentiated Thyroid Cancer when the conventional methods failed. Moreover, we suggest metabolic and genomic markers to help predict high-risk Papillary Thyroid Cancer. Both might be important tools to avoid unnecessary surgery and/or radioiodine therapy that can worsen the quality of life of the patients more than living with an indolent Thyroid nodule.

11.
Nature ; 614(7947): 349-357, 2023 02.
Article in English | MEDLINE | ID: mdl-36725930

ABSTRACT

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Subject(s)
Adenosine Triphosphate , Breast Neoplasms , Citric Acid Cycle , Deceleration , Lung Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Citric Acid Cycle/physiology , Energy Metabolism , Glycolysis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Organ Specificity , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Biosynthesis
12.
Cell Death Dis ; 14(1): 61, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702816

ABSTRACT

LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Mice , Animals , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ferroptosis/genetics , Protein Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Autophagy , Cell Line, Tumor , Mutation
13.
Autophagy ; 19(6): 1879-1881, 2023 06.
Article in English | MEDLINE | ID: mdl-36314942

ABSTRACT

Macroautophagy/autophagy is a highly conserved catabolic process pivotal to cellular homeostasis and support of tumorigenesis. Being a potential therapeutic target for cancer, we have worked to understand the implications of autophagy inhibition both systemically, and tumor-specifically. We utilized inducible expression of Atg5 shRNA to temporally control autophagy levels in a reversible manner to study the effects of tumor-intrinsic and systemic autophagic loss and restoration on established KrasG12D/+;trp53-/- (KP) lung tumor growth. We reported that transient systemic ATG5 loss significantly reduces KP lung tumor growth. Through in vivo isotope tracing and metabolic flux analyses, we noted that systemic ATG5 knockdown significantly reduces the uptake of glucose and lactate in lung tumors, leading to impaired TCA cycle metabolism and biosynthesis. Additionally, we observed an increased tumor T cell infiltration in the absence of systemic ATG5, which is essential for T cell-mediated tumor killing. Moreover, the impaired tumor metabolism and increased T cell infiltration are sustained when autophagy is restored in a short term. Finally, we found that intermittent systemic ATG5 knockdown, a mock therapy situation, significantly prolongs the lifespan of mice bearing KP lung tumors. Our findings lay the proof of concept for inhibition of autophagy as a valid approach to cancer therapy.


Subject(s)
Lung Neoplasms , T-Lymphocytes , Mice , Animals , T-Lymphocytes/metabolism , Autophagy/genetics , Lung Neoplasms/metabolism , Carcinogenesis , Cell Transformation, Neoplastic/metabolism , Autophagy-Related Protein 5/genetics , Cell Line, Tumor
14.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36256480

ABSTRACT

Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of ß-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While ß-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved ß-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor ß-catenin activation mutations and a compromised urea cycle.


Subject(s)
Glutamate-Ammonia Ligase , Liver Neoplasms , Animals , Mice , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Ammonia/metabolism , Nitrogen/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Glutamine/metabolism , Homeostasis , Urea/metabolism
15.
Cancer Res ; 82(23): 4429-4443, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36156071

ABSTRACT

Autophagy is a conserved catabolic process that maintains cellular homeostasis. Autophagy supports lung tumorigenesis and is a potential therapeutic target in lung cancer. A better understanding of the importance of tumor cell-autonomous versus systemic autophagy in lung cancer could facilitate clinical translation of autophagy inhibition. Here, we exploited inducible expression of Atg5 shRNA to temporally control Atg5 levels and to generate reversible tumor-specific and systemic autophagy loss mouse models of KrasG12D/+;p53-/- (KP) non-small cell lung cancer (NSCLC). Transient suppression of systemic but not tumor Atg5 expression significantly reduced established KP lung tumor growth without damaging normal tissues. In vivo13C isotope tracing and metabolic flux analyses demonstrated that systemic Atg5 knockdown specifically led to reduced glucose and lactate uptake. As a result, carbon flux from glucose and lactate to major metabolic pathways, including the tricarboxylic acid cycle, glycolysis, and serine biosynthesis, was significantly reduced in KP NSCLC following systemic autophagy loss. Furthermore, systemic Atg5 knockdown increased tumor T-cell infiltration, leading to T-cell-mediated tumor killing. Importantly, intermittent transient systemic Atg5 knockdown, which resembles what would occur during autophagy inhibition for cancer therapy, significantly prolonged lifespan of KP lung tumor-bearing mice, resulting in recovery of normal tissues but not tumors. Thus, systemic autophagy supports the growth of established lung tumors by promoting immune evasion and sustaining cancer cell metabolism for energy production and biosynthesis, and the inability of tumors to recover from loss of autophagy provides further proof of concept that inhibition of autophagy is a valid approach to cancer therapy. SIGNIFICANCE: Transient loss of systemic autophagy causes irreversible damage to tumors by suppressing cancer cell metabolism and promoting antitumor immunity, supporting autophagy inhibition as a rational strategy for treating lung cancer. See related commentary by Gan, p. 4322.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Autophagy/physiology , Glucose/metabolism , Lactates
16.
Sci Rep ; 12(1): 13135, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908087

ABSTRACT

The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.


Subject(s)
Antineoplastic Agents , Imidazoles/pharmacology , Lung Neoplasms , Naphthoquinones/pharmacology , AMP-Activated Protein Kinases , Antineoplastic Agents/pharmacology , Apoptosis , Bone Morphogenetic Proteins/metabolism , Cell Line, Tumor , Humans , Inhibitor of Apoptosis Proteins/metabolism , Lung Neoplasms/drug therapy , Mitochondria/metabolism , Survivin/metabolism
17.
PLoS Genet ; 18(4): e1010138, 2022 04.
Article in English | MEDLINE | ID: mdl-35404932

ABSTRACT

The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.


Subject(s)
Autophagy , Mitochondria , Animals , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Brain/metabolism , Fanconi Anemia Complementation Group N Protein , Homeostasis/genetics , Mice , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction
18.
Med ; 3(2): 119-136, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35425930

ABSTRACT

Background: Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer. Methods: Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts. Mice on standard high-carbohydrate diet or ketogenic diet were treated with cytotoxic chemotherapy (nab-paclitaxel, gemcitabine, cisplatin). Metabolic activity was monitored with metabolomics and isotope tracing, including 2H- and 13C-tracers, liquid chromatography-mass spectrometry, and imaging mass spectrometry. Findings: Ketone bodies are unidirectionally oxidized to make NADH. This stands in contrast to the carbohydrate-derived carboxylic acids lactate and pyruvate, which rapidly interconvert, buffering NADH/NAD. In murine pancreatic tumors, ketogenic diet decreases glucose's concentration and tricarboxylic acid cycle contribution, enhances 3-hydroxybutyrate's concentration and tricarboxylic acid contribution, and modestly elevates NADH, but does not impact tumor growth. In contrast, the combination of ketogenic diet and cytotoxic chemotherapy substantially raises tumor NADH and synergistically suppresses tumor growth, tripling the survival benefits of chemotherapy alone. Chemotherapy and ketogenic diet also synergize in immune-deficient mice, although long-term growth suppression was only observed in mice with an intact immune system. Conclusions: Ketogenic diet sensitizes murine pancreatic cancer tumors to cytotoxic chemotherapy. Based on these data, we have initiated a randomized clinical trial of chemotherapy with standard versus ketogenic diet for patients with metastatic pancreatic cancer (NCT04631445).


Subject(s)
Diet, Ketogenic , Pancreatic Neoplasms , Animals , Carbohydrates , Diet, Ketogenic/methods , Humans , Mice , NAD , Pancreatic Neoplasms/diet therapy , Pancreatic Neoplasms/drug therapy , Randomized Controlled Trials as Topic , Pancreatic Neoplasms
19.
Cell Death Dis ; 13(4): 370, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440095

ABSTRACT

LIF, a multifunctional cytokine, is frequently overexpressed in many types of solid tumors, including breast cancer, and plays an important role in promoting tumorigenesis. Currently, how LIF promotes tumorigenesis is not well-understood. Metabolic reprogramming is a hallmark of cancer cells and a key contributor to cancer progression. However, the role of LIF in cancer metabolic reprogramming is unclear. In this study, we found that LIF increases glucose uptake and drives glycolysis, contributing to breast tumorigenesis. Blocking glucose uptake largely abolishes the promoting effect of LIF on breast tumorigenesis. Mechanistically, LIF overexpression enhances glucose uptake via activating the AKT/GLUT1 axis to promote glycolysis. Blocking the AKT signaling by shRNA or its inhibitors greatly inhibits glycolysis driven by LIF and largely abolishes the promoting effect of LIF on breast tumorigenesis. These results demonstrate an important role of LIF overexpression in glucose metabolism reprogramming in breast cancers, which contributes to breast tumorigenesis. This study also reveals an important mechanism underlying metabolic reprogramming of breast cancers, and identifies LIF and its downstream signaling as potential therapeutic targets for breast cancers, especially those with LIF overexpression.


Subject(s)
Breast Neoplasms , Glucose , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Female , Glucose/metabolism , Glycolysis/genetics , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
20.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: mdl-35349482

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), the most common liver disease, has become a silent worldwide pandemic. The incidence of NAFLD correlates with the rise in obesity, type 2 diabetes, and metabolic syndrome. A hallmark featureof NAFLD is excessive hepatic fat accumulation or steatosis, due to dysregulated hepatic fat metabolism, which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Currently, there are no approved pharmacotherapies to treat this disease. Here, we have found that activation of the kisspeptin 1 receptor (KISS1R) signaling pathway has therapeutic effects in NAFLD. Using high-fat diet-fed mice, we demonstrated that a deletion of hepatic Kiss1r exacerbated hepatic steatosis. In contrast, enhanced stimulation of KISS1R protected against steatosis in wild-type C57BL/6J mice and decreased fibrosis using a diet-induced mouse model of NASH. Mechanistically, we found that hepatic KISS1R signaling activates the master energy regulator, AMPK, to thereby decrease lipogenesis and progression to NASH. In patients with NAFLD and in high-fat diet-fed mice, hepatic KISS1/KISS1R expression and plasma kisspeptin levels were elevated, suggesting a compensatory mechanism to reduce triglyceride synthesis. These findings establish KISS1R as a therapeutic target to treat NASH.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Kisspeptins/genetics , Liver/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Kisspeptin-1/genetics , Receptors, Kisspeptin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL