Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e33207, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022083

ABSTRACT

The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.

2.
Phytomedicine ; 132: 155849, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964152

ABSTRACT

BACKGROUND: With the increasing awareness of the safety of traditional Chinese medicine and food, as well as in-depth studies on the pharmacological activity and toxicity of Zanthoxylum armatum DC. (ZADC), it has been found that ZADC is hepatotoxic. However, the toxic substance basis and mechanism of action have not been fully elucidated. Hydroxy-α-sanshool (HAS) belongs to an amide compound in the fruits of ZADC, which may be hepatotoxic. However, the specific effects of HAS, including liver toxicity, are unclear. PURPOSE: The objectives of this research was to determine how HAS affects hepatic lipid metabolism, identify the mechanism underlying the accumulation of liver lipids by HAS, and offer assurances on the safe administration of HAS. METHODS: An in vivo experiment was performed by gavaging C57 BL/6 J mice with various dosages of HAS (5, 10, and 20 mg/kg). Biochemical indexes were measured, and histological analysis was performed to evaluate HAS hepatotoxicity. Hepatic lipid levels were determined using lipid indices and oil red O (ORO) staining. Intracellular lipid content were determined by biochemical analyses and ORO staining after treating HepG2 cells with different concentrations of HAS in vitro. Mitochondrial membrane potential, respiratory chain complex enzymes, and ATP levels were assessed by fluorescence labeling of mitochondria. The levels of proteins involved in lipogenesis and catabolism were determined using Western blotting. RESULTS: Mice in the HAS group had elevated alanine and aspartate aminotransferase blood levels as well as increased liver index compared with the controls. The pathological findings showed hepatocellular necrosis. Serum and liver levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were increased, whereas high-density lipoprotein cholesterol levels decreased. The ORO staining findings demonstrated elevated liver lipid levels. In vitro experiments demonstrated a notable elevation in triglyceride and total cholesterol levels in the HAS group. ATP, respiratory chain complex enzyme gene expression, mitochondrial membrane potential, and mitochondrial number were reduced in the HAS group. The levels of lipid synthesis-associated proteins (ACC, FASN, and SREBP-1c) were increased, and lipid catabolism-associated protein levels (PPARα and CPT1) and the p-AMPK/AMPK ratio were decreased in vivo and in vitro. CONCLUSION: HAS has hepatotoxic effects, which can induce fatty acid synthesis and mitochondrial function damage by inhibiting the AMPK signaling pathway, resulting in aberrant lipid increases.

3.
Drug Chem Toxicol ; : 1-15, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38465444

ABSTRACT

Alkaloids are naturally occurring compounds with complex structures found in natural plants. To further improve the understanding of plant alkaloids, this review focuses on the classification, toxicity and mechanisms of action, providing insight into the occurrence of alkaloid-poisoning events and guiding the safe use of alkaloids in food, supplements and clinical applications. Based on their chemical structure, alkaloids can be divided into organic amines, diterpenoids, pyridines, isoquinolines, indoles, pyrrolidines, steroids, imidazoles and purines. The mechanisms of toxicity of alkaloids, including neurotoxicity, hepatoxicity, nephrotoxicity, cardiotoxicity and cytotoxicity, have also been reviewed. Some cases of alkaloid poisoning have been introduced when used as food or clinically, including accidental food poisoning, excessive consumption, and poisoning caused by the improper use of alkaloids in a clinical setting, and the importance of safety evaluation was illustrated. This review summarizes the toxicity and mechanism of action of alkaloids and provides evidence for the need for the safe use of alkaloids in food, supplements and clinical applications.

4.
Toxicol Res (Camb) ; 13(1): tfae013, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332946

ABSTRACT

Background: Zanthoxylum armatum DC. (ZADC) is a novel food raw material resource, offering both edible and medicinal properties. Recent research has unveiled the toxic nature of ZADC, particularly its close association with the nervous system. In a prior study, we observed that administering methanol extract of Zanthoxylum armatum DC. (MZADC) to rats via gavage at a dose of 1.038 g/kg resulted in various neurotoxicity symptoms, including excessive salivation, reduced mobility, unsteady gait, muscle twitching, and altered respiratory rates. Materials and methods: We conducted cell-based research to assess the safety of ZADC and elucidate its potential toxic mechanism. In addition, we used experimental methods such as Cell Counting Kit-8, Western blot, and Flow cytometry to detect cytotoxicity in SH-SY5Y cells after intervention with MZADC. Results: Following exposure of SY-SY5Y cells with MZADC, a substantial decline in cell viability was observed, accompanied by a concentration-dependent increase in intracellular reactive oxygen species (ROS) levels. Additionally, MZADC induced cellular oxidative stress, leading to elevated malonic dialdehyde (MDA) and superoxide dismutase (SOD) concentrations while decreasing glutathione (GSH) levels. Furthermore, MZADC induced apoptosis at varying doses (20, 40, and 60 µg/mL), and this effect was associated with increased Caspase-3, Bax expressions, and reduced Bcl2 and Bcl2/Bax expressions. In addition, the investigation revealed that MZADC induced autophagy inhibition in SH-SY5Y cells by activating the mTOR signaling pathway, resulting in a decrease in LC3II/LCI and Beclin-1, while increasing p-mTOR/mTOR, p62. Conclusion: Consequently, this study suggests that MZADC triggers the mTOR pathway through oxidative stress in SH-SY5Y cells, ultimately leading to apoptosis. Understanding the toxicity mechanisms associated with ZADC can offer a valuable theoretical and experimental basis for its development and utilization.

5.
J Ethnopharmacol ; 319(Pt 3): 117321, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37866465

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum armatum DC. (ZADC) is a traditional medicinal plant with various pharmacological activities and is widely used in China, Japan, India, and other regions. Previous studies have revealed that the methanol extract of ZADC can cause neurotoxicity symptoms in rats, such as drooling, decreased appetite, decreased movement, and increased respiratory rate. However, the basis of these toxic substances and the mechanism of neurotoxicity remain unclear. AIM OF THE STUDY: To evaluate the effects of ZADC on nerve cells and their damage mechanisms and discuss the possible toxic substance basis. MATERIALS AND METHODS: The ethyl acetate extract of ZADC is obtained by extracting the methanol extract of ZADC with ethyl acetate. The Q-Orbitrap LC-MS/MS method was employed to analyze the chemical composition of the EA extract of ZADC. SH-SY5Y cells were incubated with different concentrations of the ethyl acetate extract of ZADC. The cytotoxicity of the extract was evaluated using CCK-8, LDH, and ROS assays, and the oxidative stress status of cells was assessed using MDA, GSH, and SOD. Cell apoptosis was detected using flow cytometry. Damage to mitochondrial function was evaluated by labeling mitochondria, ATP, and MMP with fluorescence. Cyto-C, Caspase-3, Caspase-9, Apaf-1, Bax, and reduced Bcl2 expression were measured to evaluate the activation of the mitochondrial apoptosis pathway. Finally, NAC intervention was used to detect changes in the relevant indicators. The activation of mitochondrial apoptosis pathway was evaluated by measuring Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and Bcl2 expression. Finally, NAC intervention was utilized to detect changes in the relevant indicators. RESULTS: After treating SY-SY5Y cells with EA extract from ZADC, cell viability decreased significantly, and the intracellular ROS level increased in a dose-dependent manner. Meanwhile, ZADC can cause cellular oxidative stress and increase MDA and SOD concentrations while decreasing GSH concentrations. It can also shorten the mitochondrial cristae and decrease the number of mitochondria. In contrast, it can reduce ATP synthesis in the mitochondria and mitochondrial membrane potential (MMP). Furthermore, it increased the apoptosis rate and the expression of Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and reduced Bcl2 expression. NAC intervention alleviated the reduction in SH-SY5Y cell survival and the accumulation of reactive oxygen species induced by the EA extract in ZADC. It also inhibits signaling pathways dominated by proteins, such as Cyto-C, reducing cell apoptosis and cytotoxicity. A total of 46 compounds were identified in the extracts. CONCLUSIONS: The results suggest that EA extract of ZADC can induce the mitochondrial apoptotic pathway by accumulating ROS in cells, leading to apoptosis. Antioxidants had a good inhibitory and protective effect against cell damage caused by the EA extract of ZADC. The neurotoxic components of ZADC may be organic acids and compounds containing amino groups.


Subject(s)
Neuroblastoma , Zanthoxylum , Humans , Animals , Rats , Caspase 3 , Caspase 9 , Reactive Oxygen Species , Chromatography, Liquid , Methanol , bcl-2-Associated X Protein , Tandem Mass Spectrometry , Mitochondria , Apoptosis , Adenosine Triphosphate , Superoxide Dismutase
6.
J Appl Toxicol ; 43(3): 338-349, 2023 03.
Article in English | MEDLINE | ID: mdl-36148542

ABSTRACT

Over the years, the safety of traditional Chinese medicine (TCM) has received widespread attention, especially the central nervous system-related adverse reactions. Indeed, the complexity of TCM has limited the widespread application of TCM. The article summarizes the main components associated with neurotoxicity, including alkaloids, terpenes, flavonoids, saponins, proteins, and heavy metals, by reviewing the literature on the neurotoxicity of TCM. It has been established that the neurotoxicity mechanisms mainly include mitochondrial damage, oxidative damage, inhibition of cell proliferation (including transcriptional and DNA damage), changes in cell membrane permeability, and apoptosis. By reviewing the latest literature, this paper provides the foothold for follow-up studies and can assist clinicians in preventing neurotoxicity via rational and safe TCM drug use.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/toxicity , DNA Damage , Central Nervous System , Flavonoids
7.
Cell Death Dis ; 13(12): 1051, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36535923

ABSTRACT

The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.


Subject(s)
Endoplasmic Reticulum Stress , Liver , Liver/metabolism , Cell Death , Unfolded Protein Response , Apoptosis
8.
Toxicon ; 217: 162-172, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35977614

ABSTRACT

Zanthoxylum armatum DC. (ZADC) has anti-inflammatory, antioxidative, and antibacterial effects. The cytotoxicity of methanol extract of Zanthoxylum armatum DC. (MZADC) has been reported for BRL 3 A cell lines. However, whether MZADC can induce liver damage in vivo remains unclear. Therefore, it is essential to explore whether ZADC causes liver injury and, if the results confirm hepatotoxicity, to further study the potential mechanisms for the in-vitro cytotoxicity of the BRL 3 A cell lines. In vivo, different doses (0.346, 0.519, and 1.038 g/kg/day) of MZADC treatment were given by intragastric administration among male Sprague Dawley rats for 28 days. Levels of serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in the high dose group increased. Steatosis and focal necrosis were found in liver cells in rats in the high dose group. In vitro, BRL 3 A cells were cultivated with MZADC at different concentrations (30, 50, and 70 µg/mL) for 24 h. The cell viability, the number of autophagosomes, and the expression levels of LC3 and Beclin-1 were on a decreasing trend. Besides, proportions of p-mTOR/mTOR and p-ULK1/ULK1 increased. Meanwhile, reactive oxygen species (ROS) accumulation and the content of malondialdehyde (MDA) were on the rise while the activity of superoxide dismutase (SOD) and the content of glutathione (GSH) was on the decline. This research suggests that MZADC may cause rats liver injury and inhibit autophagy in BRL 3 A cells by the mTOR/ULK1 pathway, and further induce intracellular oxidative damage.


Subject(s)
Chemical and Drug Induced Liver Injury , Zanthoxylum , Alanine Transaminase/metabolism , Animals , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Liver , Male , Oxidative Stress , Plant Extracts/toxicity , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases , Zanthoxylum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...