Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Diabetes Investig ; 15(1): 70-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37846170

ABSTRACT

AIMS/INTRODUCTION: Type 2 diabetes triggers an inflammatory response that can damage red blood cells. M2 macrophages have inhibitory effects on inflammation, and play an important role in tissue damage repair and fibrosis. Autologous blood transfusion has the potential to inhibit red blood cell damage by mediating macrophage polarization. MATERIALS AND METHODS: Swiss mice were used to establish a suitable type 2 diabetes model, and autologous blood transfusion was carried out. The mice were killed, the blood of the mice was collected and CD14+ monocytes were sorted. The expression levels of phenotypic molecules CD16, CD32 and CD206 in CD14+ monocytes were analyzed by flow cytometry. The proportion of M1 and M2 macrophages were analyzed by flow cytometry. The Q value, P50 , 2,3-diphosphoglycerate and Na+ -K+ -ATPase of red blood cells were detected. The red blood cell osmotic fragility test analyzed the red blood cell osmotic fragility. Western blot analysis was used to analyze the expression changes of erythrocyte surface membrane proteins or transporters erythrocyte membrane protein band 4.1, sphingosine-1-phosphate, glycolipid transfer protein and signal peptide peptidase-like 2A. RESULTS: Autologous blood transfusion induced a significant increase in the number of macrophages. The state and capacity of blood cells improved with autologous blood transfusion. Reinfusion of fresh autologous blood in type 2 diabetes mice made erythrocytes shrink. The expression of erythrocyte-related proteins proved that the erythrocyte injury in the reinfusion of fresh autologous blood + type 2 diabetes group was significantly reduced. CONCLUSION: The reinfusion of fresh autologous blood into the body of patients with type 2 diabetes can induce macrophage polarization to M2, thereby inhibiting red blood cell damage.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Monocytes/metabolism , Macrophages/metabolism , Erythrocytes , Inflammation/metabolism
2.
BMC Geriatr ; 23(1): 689, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875833

ABSTRACT

OBJECTIVE: To explore the effect of acute normovolemic hemodilution (ANH) on the anesthetic effect, plasma concentration, and postoperative recovery quality in elderly patients undergoing spinal surgery. METHODS: A total of 60 cases of elderly patients aged 65 to 75 years who underwent elective multilevel spinal surgery were assigned randomly into the ANH group (n = 30) and control group (n = 30). Hemodynamic and blood gas analysis indexes were observed and recorded before ANH (T1), after ANH (T2), immediately after postoperative autologous blood transfusion (T3), 10 min (T4), 20 min (T5), 30 min (T6), 40 min (T7), and 50 min (T8) after the transfusion, and at the end of the transfusion (i.e., 60 min; T9). At T3 ~ 9, bispectral index (BIS) and train-of-four (TOF) stimulation were recorded and the plasma propofol/cisatracurium concentration was determined. The extubation time and recovery quality were recorded. RESULTS: The ANH group presented a lower MAP value and a higher SVV value at T2, and shorter extubation and orientation recovery time (P < 0.05) compared with the control group. BIS values at T8 and T9 were lower in the ANH group than those in the control group (P < 0.05). TOF values at T7 ~ 9 were lower in the ANH group than those in the control group (P < 0.05). There were no statistically significant differences in the postoperative plasma concentrations of propofol and cisatracurium between the groups (P > 0.05). CONCLUSION: During orthopedic surgery, the plasma concentration of elderly patients is increased after autologous blood transfusion of ANH, and the depth of anesthesia and muscle relaxant effect are strengthened, thus leading to delayed recovery of respiratory function and extubation.


Subject(s)
Anesthetics , Propofol , Aged , Humans , Hemodilution , Preoperative Care
3.
Aging (Albany NY) ; 15(12): 5662-5672, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37387538

ABSTRACT

BACKGROUND: To study the link between macrophage polarization, PUM1/Cripto-1 pathway and ferroptosis in the allogeneic blood transfusion setting. METHODS: This is an exploratory research. The purpose of this study was to investigate the effect of PUM1/Cripto-1 pathway on ferroptosis by regulating macrophage polarization in allogeneic blood transfused mice. Establish in vitro cell models and in vivo rat models. To find out whether PUM1 and Cripto-1 were expressed, RT-qPCR and Western blot analyses were employed. The macrophage polarization markers iNOS, TNF-, IL-1, IL-6, Arg-1, and IL-10 were utilized to identify M1 and M2 macrophages. JC-1 staining was used to detect ATP membrane potential in peripheral blood macrophages. RESULTS: In animal experiments, expression of Cripto-1 was negatively regulated by PUM1 and promoted M1 type polarization of macrophages. Allogeneic blood transfusion assured good state of macrophage mitochondria. Allogeneic blood transfusion inhibited ferroptosis in macrophages by affecting the PUM1/Cripto-1 pathway. In cell experiments, PUM1 regulated Cripto-1 in mouse macrophage RAW264.7. Polarization of RAW264.7 cells was regulated by the PUM1/Cripto-1 pathway. The effect of PUM1/Cripto-1 pathway on macrophage ferroptosis in cell experiments was consistent with that in animal experiments. CONCLUSIONS: In this study, through in vivo cell experiments and in vitro animal experiments, it was successfully proved that PUM1/Cripto-1 pathway affected ferroptosis by regulating macrophage polarization in allogeneic blood transfused mice.


Subject(s)
Ferroptosis , Hematopoietic Stem Cell Transplantation , Mice , Rats , Animals , Macrophages/metabolism , RAW 264.7 Cells , Intercellular Signaling Peptides and Proteins/metabolism , Blood Transfusion
4.
J Cell Mol Med ; 27(10): 1353-1361, 2023 05.
Article in English | MEDLINE | ID: mdl-37038623

ABSTRACT

To explore the molecular mechanism of autologous blood transfusion promoting autophagy of hepatocellular carcinoma (HCC) cells and inhibiting the HCC progression through HIF-1α signalling pathway. This is a research paper. Rat hepatocellular carcinoma model and HepG2 cell model were built. The rats with HCC were conducted a surgery, and their blood was collected for detection to detect the recurrence and metastasis of the rats. Western blot was used to analysed the expression of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein. The apoptosis rate of HepG2 cells was detected by flow cytometry, and autophagosomes were observed by transmission electron microscopy. HIF-1α expression was measured by immunofluorescence assay. The expressions of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein were highest in model + autoblood group compared with the model group. HIF-1α content of model group was higher, but content of TP53, MDM2, ATG5 and ATG14 in the model group is the second. The highest apoptosis rate was found in HepG2 + autoblood group. The number of autophagosomes in HepG2 + autoblood was obviously larger than that of HepG2 + autoblood + inhibitor. HIF-1α expression of immunofluorescence assay showed that high expression of HIF-1α was clearly observed in HepG2 and HepG2 + autoblood group from confocal observation. However, there was no HIF-1α protein expression in HepG2 + autoblood + inhibitor group. The migration rate in HepG2 group, HepG2 + autoblood group and HepG2 + autoblood + inhibitor group was 85.71 ± 7.38%, 14.36 ± 6.54% and 61.25 ± 5.39%, respectively. Autologous blood transfusion promotes autophagy of HCC cells through HIF-1α signalling pathway, which further inhibits HCC migration and erosion.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Blood Transfusion, Autologous , Signal Transduction , Autophagy , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor
5.
Front Pharmacol ; 14: 947982, 2023.
Article in English | MEDLINE | ID: mdl-37025488

ABSTRACT

Objective: This study aimed to clarify the effect of parecoxib sodium on the occurrence of postoperative delirium and to investigate its possible mechanism. Methods: A total of 80 patients who underwent elective hip arthroplasty in our hospital between December 2020 and December 2021 were selected and randomly divided into two groups: a parecoxib sodium group (group P, n = 40) and a control group (group C, n = 40). Patients in group P were intravenously injected with 40 mg of parecoxib sodium 30 min before anesthesia and at the end of the surgery. Patients in group C were intravenously injected with the same volume of normal saline at the same time points. The primary endpoint was the incidence of POD, and the secondary endpoints were the levels of inflammatory factors (tumor necrosis factor- α [TNF-α], interleukin [IL]-1ß, IL-6, and IL-10), nerve injury-related factors (brain-derived neurotrophic factor [BDNF], S-100ß protein, neuron-specific enolase [NSE], and neurofilament light chain [NfL]), and antioxidant factors (heme oxygenase-1 [HO-1]), as well as the Visual Analogue Scale (VAS) and Confusion Assessment Method-Chinese Reversion (CAM-CR) scores. Results: The incidence of POD was 10% in group P and 27.5% in group C. Intergroup comparison revealed that the levels of TNF-α, IL-1ß, S-100ß, NfL, and NSE were lower, and BDNF was higher, in group P than in group C at each postoperative time point. The levels of IL-6 were lower, and the levels of IL-10 and HO-1 were higher, in group P than in group C at 1 h and 1 day postoperatively (p < 0.05). Three days after surgery, the differences in the levels of IL-6, IL-10, and HO-1 were not statistically significant between the two groups (p > 0.05). The VAS and CAM-CR scores were lower at each postoperative time point in group P than in group C (p < 0.05). Conclusion: Parecoxib sodium could reduce postoperative pain, decrease the plasma levels of inflammatory and nerve injury-related factors, upregulate HO-1 levels, and reduce the incidence of POD. The results of this study suggest that parecoxib sodium may reduce the occurrence of POD through the effects of anti-inflammation, analgesia, and antioxidants.

6.
Biomed Res Int ; 2023: 1277258, 2023.
Article in English | MEDLINE | ID: mdl-36644162

ABSTRACT

In this study, the expression of Cripto-1 and the role of macrophage polarization in immune response after allogeneic transfusion were analyzed by constructing a mouse model of allogeneic transfusion. In order to analyze the effects of miR-449a on the PI3K/AKT/NF-κB signaling pathway and the expression of downstream related regulatory factors under normal and abnormal conditions, we adopt in vitro and in vivo experiments separately. The molecular mechanism of PI3K/AKT/NF-κB signaling pathway was analyzed by blocking or activating gene expression and western blotting. Experiment in vitro has confirmed that inhibition of miR-449a increased the protein expression of Cripto-1. In vivo experiments confirmed that allogeneic transfusion reduced the expression of Cripto-1, which further inhibited NF-κB signaling pathway through AKT/PI3K phosphorylation, regulated macrophage polarization, inhibited M1 polarization of macrophages, promoted M2 polarization, and thus affected immune response of the body.


Subject(s)
Hematopoietic Stem Cell Transplantation , MicroRNAs , Animals , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Macrophages/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism
7.
Acta Diabetol ; 60(4): 481-492, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36625925

ABSTRACT

AIMS: To explore the effect and mechanism of autologous blood transfusion impeding glycolysis in macrophages and inhibiting red blood cells (RBCs) injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. METHODS: Cell transfection were performed and diabetic mice model was constructed. The group were divided into control (NC) and type 2 diabetes model (T2D). T2D model mice were injected with preserved autologous blood, si-PI3K, si-PKM2, si-NC Tran+T2D, (Tran+T2D+si-PI3K, Tran+T2D si-PKM2, Tran+T2D+si-NC) through tail vein. The anti-oxidative effects of transfusion of autologous blood in CD14+ monocytes were detected. The expression of PI3K/Akt/PKM2 protein in CD14+ monocytes were examined by western blot. Effect of autologous blood transfusion ameliorating RBCs injury by regulating PI3K and PKM2 in T2D mice were detected. RESULTS: Effects on oxidative stress in T2D mice were all overturned after autologous blood transfusion in T2D mice. The results manifested that the levels of PI3K, pAkt and PKM2 were downregulated, while the expression of HIF-1α was upregulated in CD14+ monocytes from T2D mice, whereas these influences were all effectively reversed by autologous blood transfusion in T2D mice. The survival rate of RBCs in the serum of T2D mice was declined in the serum of T2D mice, while the effect was reversed by the autologous blood transfusion. CONCLUSION: Autologous blood transfusion can reduce glycolysis in macrophages and inhibit the release of inflammatory factors through the PI3K/PKM2 signal axis, thereby inhibiting red blood cell damage and improving the oxygen-carrying capacity and survival activity of RBCs in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/therapy , Blood Transfusion, Autologous , Glycolysis , Erythrocytes/metabolism , Macrophages/metabolism
9.
Curr Pharm Biotechnol ; 23(2): 300-306, 2022.
Article in English | MEDLINE | ID: mdl-33618644

ABSTRACT

BACKGROUND: Pre-operative autologous blood donation (PABD) is one of the most widely distributed autologous blood donation means, which has positive effects on erythropoiesis. However, whether PABD can stimulate the bone marrow hematopoiesis after hepatectomy has not been reported. METHODS: Totally 80 New Zealand rabbits were randomly divided into 4 groups that included control group, surgery group, hemodilutional autotransfusion (HA) group and PABD group. Automatic reticulocyte examination was performed to detect the content of reticulocyte and immature reticulocyte fractions (IRF). Flow cytometric analysis was employed to monitor the level of CD34+ cells and the cell cycle status. Southern blotting was conducted to determine the telomere length of CD34+ cells. RESULTS: The content of high fluorescence reticulocytes (HFR) and IRF was decreased at 6 h and 24 h after autotransfusion. However, the level of CD34+ cells was upregulated after PABD. Cell cycle status analysis revealed that the majority of the CD34+ cells in HA and PABD group were maintained in G0/G1 phase. The telomere length in HA and PABD group was shortened than that of the control group and surgery group. CONCLUSION: PABD could promote the bone marrow hematopoietic functions in rabbits after hepatectomy via stimulating proliferation of CD34+ cells and shortening the telomere length of CD34+ cells, but the content of HFR was not increased immediately because of the stuck of CD34+ cells in the G0/G1 phase.


Subject(s)
Blood Donors , Bone Marrow , Animals , Blood Transfusion, Autologous , Flow Cytometry , Hepatectomy , Humans , Rabbits
10.
Adv Clin Exp Med ; 30(6): 617-622, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34033707

ABSTRACT

BACKGROUND: Sepsis is one of most common causes of death in the intensive care unit (ICU) due to infection and inflammation. The Duffy antigen receptor for chemokines (DARC) regulates pro-inflammatory cytokines, thus playing an important role in inflammation. OBJECTIVES: This study aimed to elucidate the correlation among erythrocyte transfusion, macrophage pyroptosis and inflammation in the progression of sepsis. MATERIAL AND METHODS: Alanine aminotransferase (ALT/GPT) activity was measured with the ALT/GPT activity measurement kit (Jiancheng Bio, Nanjing, China) according to the kit manual. The ET-1 concentration was measured with enzyme-linked immunosorbent assay (ELISA) using the endothelin-1 (ET-1) measurement kit (Jiancheng Bio) according to the kit manual. Apoptosis was evaluated using flow cytometry-based Annexin V staining assay. The cells were collected using centrifugation and resuspended in binding buffer. Ultrastructural analysis of pyroptotic body, the levels of interleukin (IL)-1ß, IL-18, IL-33, MIP-2, CXCL8, reactive oxygen species (ROS), and LTB4 were measured with ELISA. RESULTS: Our results showed that septic rats had impaired hepatic function and ET-1 levels. Erythrocyte transfusion upregulated DARC expression in the sepsis model. Erythrocyte transfusion also affected pyroptosis in macrophages, reduced the production of inflammatory cytokines, such as IL-1ß, IL-18 and IL-33, and alleviated cytotoxicity in the sepsis model. CONCLUSIONS: Erythrocyte transfusion may function as a therapeutic tool against sepsis by regulating pyroptosis, inflammation and cytotoxicity.


Subject(s)
Pyroptosis , Sepsis , Animals , China , Erythrocyte Transfusion , Inflammation , Macrophages , Rats
11.
Cell Transplant ; 30: 9636897211005683, 2021.
Article in English | MEDLINE | ID: mdl-34000850

ABSTRACT

Autotransfusion refers to a blood transfusion method in which the blood or blood components of the patient are collected under certain conditions, returned to himself when the patient needs surgery or emergency after a series of storing and processing. Although autotransfusion can avoid blood-borne diseases and adverse reactions related to allogeneic blood transfusion, a series of structural and functional changes of erythrocytes will occur during extension of storage time, thus affecting the efficacy of clinical blood transfusion. Our research was aimed to explore the change of erythrocyte oxygen-carrying capacity in different storage time, such as effective oxygen uptake (Q), P50, 2,3-DPG, Na+-K+-ATPase, to detect membrane potential, the change of Ca2+, and reactive oxygen species (ROS) change of erythrocytes. At the same time, Western blot was used to detect the expression of Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2) proteins on the cytomembrane, from the perspective of oxidative stress to explore the function change of erythrocytes after different storage time. This study is expected to provide experimental data for further clarifying the functional status of erythrocytes with different preservation time in patients with autotransfusion, achieving accurate infusion of erythrocytes and improving the therapeutic effect of autologous blood transfusion, which has important clinical application value.


Subject(s)
Erythrocytes/metabolism , Oxidative Stress/genetics , Oxygen/metabolism , Blood Transfusion, Autologous , Humans
12.
Adv Clin Exp Med ; 30(4): 387-394, 2021 04.
Article in English | MEDLINE | ID: mdl-33908200

ABSTRACT

BACKGROUND: After storing blood for a period of time, the structure and properties of the red blood cells (RBC) will change, which results in a decrease in the oxygen-carrying capacity, and further has a certain impact on their exosomes. OBJECTIVES: Effective oxygen uptake (Q), P50, 2,3-DPG, and Na+-K+-ATP of RBC after different storage times were detected. Electron microscopy was used to observe the morphology of RBC and the characteristics of secreting exosomes. Western blot was used to detect the expression of phenotypes CD63 and CD81 of exosomes, and the expression of mitochondrial riboprotein MRPS35 of exosomes was also detected to explore the mechanism of decreased function of RBC with the extension of preservation time. MATERIAL AND METHODS: After the RBC suspension was prepared, the effective oxygen-carrying capacity (Q) and P50, as well as 2,3-DPG and Na+-K+-ATP were prepared. This was followed by morphology observation of erythrocyte exosomes using transmission electron microscope (TEM), and by western blot analysis of exosome phenotypes CD63 and CD81. RESULTS: Erythrocytes secrete exosomes, which results in abnormal expression of related proteins in mitochondria. This leads to increased ROS production, mitochondrial apoptosis and, finally, changes in or damage to erythrocytes. CONCLUSIONS: Changes in the rheological properties and oxygen-carrying functions of erythrocytes during preservation are all observable manifestations, and underlying these manifestations are mechanisms of damage to erythrocytes at a molecular level. Erythrocytes secrete exosomes, which results in abnormal expression of related proteins in mitochondria, increasing ROS production, mitochondrial apoptosis and, finally, changes or damage to erythrocytes.


Subject(s)
Exosomes , Oxygen , Conservation of Natural Resources , Erythrocytes , Sodium
13.
Transfus Clin Biol ; 28(1): 25-29, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33227454

ABSTRACT

OBJECTIVE: By observing the changes in the number and activity of CD34+ cells in bone marrow after predeposit autotransfusion (PAT) to patients with femoral shaft fracture (FSF), to evaluate the effects of PAT on hematopoietic function and hematopoietic stem cells in bone marrow. METHODS: Selected FSF patients were randomly divided into 2 groups: the control group (patients did not receive blood transfusion after surgery) and PAT group (patients received PAT after surgery). The content of RBC and Plt in blood samples were counted by blood routine. The cell cycle and proportion of CD34+ myelinated cells in blood samples was analyzed by flow cytometry. The telomere DNA length of hematopoietic stem cells (HSCs) in the control groups and PAT group at postoperation 24 was analyzed by southern blot. RESULTS: The content of RBC and Plt in postoperation 6h and 24h in the control group was evidently higher compared to that in PAT group, while Hb content in control group was significantly lower compared to that in PAT group. The proportion of CD34+ myelinated cells in post-transfusion 6h and postoperation 24h in PAT group was evidently higher compared to that in the control group. In PAT group, S phase at postoperation 24h was significantly larger compared to that at post-transfusion 6h. The telomere DNA length of HSCs in PAT group was longer than that in the control group. CONCLUSION: PAT can increase the number of HSC, while does not cause the abnormal aging of HSCs. PAT is suitable for postoperative blood transfusion of patients with FSF.


Subject(s)
Blood Transfusion, Autologous , Bone Marrow , Bone Marrow Cells , Hematopoiesis , Hematopoietic Stem Cells , Humans
14.
Cell Transplant ; 29: 963689720950218, 2020.
Article in English | MEDLINE | ID: mdl-33225714

ABSTRACT

This study aimed to investigate the protective effects of erythrocyte-mediated endoplasmic reticulum (ER) stress in macrophages in hemorrhagic shock. An hemorrhagic shock model was established in male BALB/c mice. Animals were randomly divided into three groups (n = 8): control group (A), erythrocyte reinfusion group (B), and TLR9 inhibition group (C). Eight healthy BALB/c mice were also included as group N (n = 8). Mice in group A were not treated, while mice in groups B and C were transfused with red blood cells separated from the blood of mice in group N. Flow cytometry was used to detect the expression of erythrocyte surface protein TLR9 in each group. Immunofluorescence assay was used to analyze the distribution and relative expression of protein STING in macrophages. Flow cytometry was used to analyze the expression of STING, ATF6, and IRE1 in macrophages. Enzyme-linked immunosorbent assay was used to analyze the levels of inflammatory signal molecules, including IFN-α, IFN-ß, IL-6, CCL4, CCL5, and IL-6. FITC-Annexin V was used to analyze the apoptosis of immune cells (macrophages) in mouse blood samples and to detect the concentration of calcium ions in erythrocyte cytoplasm. The results showed that the expression of erythrocyte surface protein TLR9; the distribution of STING-positive cells in macrophages; the expressions of STING, ATF6, and IRE1 in macrophages; the levels of inflammatory signal molecules; the apoptosis rate of macrophages; and the intracellular calcium concentration in erythrocytes in group B were higher than those in group A, followed by group C. These results suggest that TLR9 regulates ER stress in macrophages of mice with hemorrhagic shock through the TLR9-cGAS-STING-IFN signaling pathway. Increased expression of TLR9 enhanced macrophage activity, reduced apoptosis, enhanced inflammatory response and immune response, and restored electrolyte level, which might be a therapeutic option for the treatment of hemorrhagic shock.


Subject(s)
Endoplasmic Reticulum Stress , Erythrocytes/metabolism , Interferons/metabolism , Macrophages/pathology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Shock, Hemorrhagic/blood , Toll-Like Receptor 9/metabolism , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Calcium/metabolism , Cytoplasm/metabolism , Inflammation/pathology , Male , Mice, Inbred BALB C , Protein Serine-Threonine Kinases/metabolism , Signal Transduction
15.
J Int Med Res ; 48(8): 300060520947872, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32862756

ABSTRACT

OBJECTIVE: To investigate the characteristics of the macrophage response to transfusion of erythrocytes kept at different storage times in the mouse model of haemorrhagic shock. METHODS: Erythrocytes were isolated from mice and stored for 7, 21 or 35 days and samples injected intravenously into haemorrhagic shock mice. Changes in macrophages, inflammatory cytokines and T cell differentiation were assessed using flow cytometry or enzyme-linked immunosorbent assay (ELISA). In a second experiment, haemorrhagic shock mice were injected with 21D-erythrocytes and the expression of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), arginine -1 (Arg-1) and inducible nitrous oxide (iNOS) determined. RESULTS: The proportion of M1-polarized macrophages was greatest in the 21D group while M2 macrophages tended to increase with the erythrocyte storage time. Levels of inflammatory cytokines and T helper 1 (Th1) cells increased in proportion to erythrocytes storage time. Most regulatory T cells (Treg) were found at 21D. Arg-1 expression was significantly increased in a group that received an heme oxygenase 1 (HO-1) agonist and significantly decreased in a group that received an HO-1 inhibitor but there were no differences in the expression of iNOS or Nrf2. CONCLUSION: 21D storage time may be an important time point for erythrocyte storage and immunity response and Arg-1 may have a role in the macrophage response to erythrocyte infusion.


Subject(s)
Shock, Hemorrhagic , Animals , Cytokines , Erythrocytes , Heme Oxygenase-1/genetics , Macrophages , Mice , NF-E2-Related Factor 2
16.
Cell Transplant ; 29: 963689720947347, 2020.
Article in English | MEDLINE | ID: mdl-32907380

ABSTRACT

Sepsis is a life-threatening disease that results in excessive stimulation of the host's immune cells. In the animal study, the purpose was to investigate the roles of fresh frozen plasma (FFP) transfusion in shaping the CD4+ T lymphocytes immune response through modulating the secreted exosome protein Galectin-9 in mice with severe sepsis. By using Western blot analysis, we first identified that the protein Galectin-9 is highly accumulated in the blood plasma of severe sepsis mice, and with transmission electron microscopy (TEM) and protein analysis, we found that Galectin-9 is a secreted exosome protein. Thereafter, we treated the severe sepsis mice with the antibiotic Cefuroxime Axetil; one group of mice received FFP transfusion and the other group of mice received normal saline. Surprisingly, the FFP transfusion reduced the secretion of exosome protein Galectin-9 and there was crosstalking between the exosome protein Galectin-9 and CD4+ T lymphocytes in mice with severe sepsis. Results showed that the proliferation of T helper (Th) cells (Th1 and Th17) was promoted, and regulatory T (Treg) cells' maintenance was inhibited in the sepsis mice after receiving FFP transfusion. Correspondingly, this immune reprogrammed activity shaped the inflammatory cytokine secretion with an increase in the interleukin (IL)-1ß, IL-6, and interferon-gamma levels, while it decreased IL-10 levels. Taken together, it was suggested that FFP transfusion promoted reprogramming of CD4+ T lymphocytes' immune response through inhibiting the secretion of exosome protein Galectin-9 in mice with severe sepsis to relieve immunosuppression.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Exosomes/metabolism , Galectins/metabolism , Plasma/metabolism , Sepsis/blood , Animals , Disease Models, Animal , Mice
17.
Adv Clin Exp Med ; 29(7): 833-840, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32755075

ABSTRACT

BACKGROUND: Red blood cell (RBC) transfusion is associated with systemic inflammation and immune suppression as adverse outcomes. OBJECTIVES: To investigate the immunomodulatory function of the transfused autologous RBC in altering pro-inflammatory and immunosuppressive effects. MATERIAL AND METHODS: A total of 24 Sprague Dawley male rats were randomly divided into 3 groups (n = 8 in each group). Group 1 did not receive blood transfusions, while the other 2 groups of rats separately received transfusion of RBC stored for 14 days (group 2) and 35 days (group 3). The rats were treated with HO-1 inhibitor, HO-1 inducer and nuclear factor erythroid 2-related factor 2 (Nrf2) activator after they separately received autologous transfusion of RBC that were cryopreserved for 14 days or 35 days. The blood samples of the rats were collected 12 h after the transfusion, and the macrophage phenotype of M1 and M2 were analyzed with flow cytometry (FCM). Also, the surface protein expression of CD68 and CD200R in macrophages were analyzed and the inflammatory signals in the serum were measured with enzyme-linked immunosorbent assay (ELISA). Moreover, the location and expression of proteins heme oxygenase 1 (HO-1), arginine 1 (Arg-1) and nitric oxide synthase 2 (NOS2) in macrophage were detected with immunofluorescence (IF). RESULTS: Autologous transfusion of long-time stored ("old") RBC promoted macrophage polarization to M2 phenotype and upregulated the expression of its surface proteins CD68 and CD200R. The pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-1ß, and IL-18 were inhibited, and the secretion of NOS isoforms (iNOS) in serum was reduced with blood transfusion; contrarily, the production of IL-10 and CCL22 was increased. Additionally, HO-1, Arg-1 and NOS2 proteins were located in the cytoplasm, and HO-1 and Arg-1 proteins were highly expressed in macrophage, while the expression of protein NOS2 was low. Moreover, Nrf2, HO-1 and Arg-1 proteins were upregulated in macrophage after receiving "old" RBC transfusion. CONCLUSIONS: Autologous transfusion of "old" RBC drove the macrophage phenotype toward M2 macrophages and induced immunosuppressive effects through the IL-10-NRF2-HO-1 signals.


Subject(s)
Interleukin-10 , Macrophages , Animals , Erythrocytes , Heme Oxygenase (Decyclizing) , Lipopolysaccharides , Male , NF-E2-Related Factor 2 , Rats , Rats, Sprague-Dawley
18.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32501470

ABSTRACT

Erythrocyte membrane is crucial to maintain the stability of erythrocyte structure. The membrane protein on the surface of erythrocyte membrane enables erythrocyte to have plasticity and pass through the microcirculation without being blocked or destroyed. Decreased deformability of erythrocyte membrane protein will lead to a series of pathological and physiological changes such as tissue and organ ischemia and hypoxia. Therefore, this research collected 30 cases of healthy blood donors, and explored erythrocyte stored at different times relating indicators including effective oxygen uptake (Q), P50, 2,3-DPG, Na+-k+-ATP. Erythrocyte morphology was observed by electron microscopy. Western blot and immunofluorescence assay were used to detect membrane protein EPB41, S1P, GLTP, SPPL2A expression changes of erythrocyte. To explore the effective carry oxygen capacity of erythrocyte at different storage time resulting in the expression change of erythrocyte surface membrane protein.


Subject(s)
Blood Donors , Blood Preservation , Erythrocyte Membrane/metabolism , Oxygen/blood , 2,3-Diphosphoglycerate/blood , Aspartic Acid Endopeptidases/blood , Carrier Proteins/blood , Cytoskeletal Proteins/blood , Erythrocyte Membrane/ultrastructure , Humans , Membrane Proteins/blood , Sodium-Potassium-Exchanging ATPase/blood , Sphingosine-1-Phosphate Receptors/blood , Time Factors
19.
FASEB J ; 34(5): 6038-6054, 2020 05.
Article in English | MEDLINE | ID: mdl-32202355

ABSTRACT

Transfusion of autologous blood is a timesaving, convenient, safe, and effective therapy from a clinical perspective, and often employed for the treatment of diabetic patients. Stabilization of HIF-1α has been widely reported to be a critical factor in the improvement of wound healing in diabetes. Therefore, our study reveals the roles of improved autologous blood in wound healing in diabetes, through autologous blood transfusion in a mouse model. Initially, BALB/c mice were subjected to streptozotocin for diabetic mouse model establishment. Diabetic mice were transfused with improved or standard autologous blood in perfusion culture system. Roles of improved autologous blood in mediating HIF-1α pathway were determined by measuring expression of VEGF, EGF, HIF-1α, and HSP-90. In order to assess the detailed regulatory mechanism of improved autologous blood in perspective of wound healing, cell proliferation, migration and cell cycle, fibroblasts isolated from diabetic mice were transfected with HIF-1α siRNA. Mice transfused with improved autologous blood exhibited increased levels of CD31 and α-SMA in skin tissues, and reduced TNF-α, IL-1ß, and IL-6 levels, indicating that improved autologous blood promoted wound healing ability and reduced the release of inflammatory factors. Diabetic mice transfused with improved autologous blood presented activated HIF-1α pathway. The survival rate, proliferation, and migration of fibroblasts were elevated via activation of the HIF-1α pathway. Taken together, improved blood preservation solution could enhance the oxygen carrying capacity of red blood cells and wound healing in mice with diabetes, which is achieved through regulation of HIF-1α pathway.


Subject(s)
Blood Preservation/methods , Blood Transfusion, Autologous/methods , Diabetes Mellitus, Experimental/therapy , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Physiologic , Wound Healing , Animals , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Male , Mice
20.
Mol Ther Nucleic Acids ; 17: 504-515, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31344658

ABSTRACT

Impaired wound healing is a debilitating complication of diabetes. The long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been recognized to be differentially expressed in various diseases. However, its underlying mechanism in diabetes has not been fully understood. Notably, we aim to examine the expression of MALAT1 in diabetic mice and its role in wound healing involving the hypoxia-inducible factor-1α (HIF-1α) signaling pathway with a modified autologous blood preservative solution reported. A mouse model of diabetes was established. MALAT1 was identified to promote the activation of the HIF-1α signaling pathway and to be enriched in autologous blood through modified preservation, which might facilitate the improvement of physiological function of blood cells. Through gain- or loss-of-function approaches, viability of fibroblasts cultured in high glucose, wound healing of mice, and collagen expression in wound areas were enhanced by MALAT1 and HIF-1α. Taken together, the present study demonstrated that the physiological status of mouse blood was effectively improved by modified autologous blood preservation, which exhibited upregulated MALAT1, thereby accelerating the fibroblast activation and wound healing in diabetic mice via the activation of the HIF-1α signaling pathway. The upregulation of MALAT1 activating the HIF-1α signaling pathway provides a novel insight into drug targets against diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...