Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Dev Biol ; 8: 374, 2020.
Article in English | MEDLINE | ID: mdl-32528953

ABSTRACT

Autophagy (macroautophagy) is an evolutionarily conserved degradation pathway involved in bulk degradation of cytoplasmic organelles, old protein, and other macromolecules and nutrient recycling during starvation. Extensive studies on functions of autophagy-related genes have revealed that autophagy plays a role in cell differentiation and pathogenesis of pathogenic fungi. In this study, we identified and characterized 14 core autophagy machinery genes (ATGs) in C. neoformans. To understand the function of autophagy in virulence and fungal development in C. neoformans, we knocked out the 14 ATGs in both α and a mating type strain backgrounds in C. neoformans, respectively, by using biolistic transformation and in vivo homologous recombination. Fungal virulence assay showed that virulence of each atgΔ mutants was attenuated in a murine inhalation systemic-infection model, although virulence factor production was not dramatically impaired in vitro. Fungal mating assays showed that all the 14 ATGs are essential for fungal sexual reproduction as basidiospore production was blocked in bilateral mating between each atgΔ mutants. Fungal nuclei development assay showed that nuclei in the bilateral mating of each atgΔ mutants failed to undergo meiosis after fusion, indicating autophagy is essential for regulating meiosis during mating. Overall, our study showed that autophagy is essential for fungal virulence and sexual reproduction in C. neoformans, which likely represents a conserved novel virulence and sexual reproduction control mechanism that involves the autophagy-mediated proteolysis pathway.

2.
Aging (Albany NY) ; 11(1): 240-248, 2019 01 13.
Article in English | MEDLINE | ID: mdl-30636724

ABSTRACT

Metformin is a hypoglycemic agent used clinically in the treatment of type 2 diabetics. In addition, metformin is being investigated as a potential geroprotector. Here, we investigated the effects of metformin silkworm lifespan and the underlying molecular pathways involved. We found that metformin prolonged the lifespan of the male silkworm without reducing body weight, which suggests metformin can increase lifespan through remodeling of the animal's energy distribution strategy. Consistent with that idea, metformin reduced silk production and thus the energy devoted to that process. Metformin also increased fasting tolerance and levels of the antioxidant glutathione, and also activated an adenosine monophosphate-activated protein kinase-p53-forkhead box class O signaling pathway in silkworm. These results suggest that activity in this pathway may contribute to metformin-induced lifespan extension in silkworm by increasing stress resistance and antioxidative capacity while reducing energy output for silk product. The results also show that the silkworm is a potential useful animal model for evaluating the effects of small molecules with potential clinical utility.


Subject(s)
Bombyx/drug effects , Energy Metabolism/drug effects , Hypoglycemic Agents/pharmacology , Longevity/drug effects , Metformin/pharmacology , Animals , Antioxidants , Bombyx/physiology , Energy Metabolism/physiology , Larva/drug effects , Larva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL