Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nutrients ; 15(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36839401

ABSTRACT

Gut microbiota imbalances lead to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is primarily accompanied by hepatic steatosis. Hydroxyphenyl propionic acids (HPP) have shown great potential in inhibiting lipid accumulation but their protective effects concerning NAFLD and intestinal microbiota have remained unclear. In this paper, we investigated the efficacies of 3-HPP and 4-HPP on hepatic steatosis and gut flora in mice fed a high-fat diet (HFD). We found that 3-HPP and 4-HPP administration decreased body weight and liver index, ameliorated dyslipidemia, and alleviated hepatic steatosis. Furthermore, 3-HPP and 4-HPP enhanced the multiformity of gut microbiota; improved the relative abundance of GCA-900066575, unidentified_Lachnospiraceae, and Lachnospiraceae_UCG-006 at genus level; increased concentration of acetic acid, propionic acid and butanoic acid in faeces; and reduced systemic endotoxin levels in NAFLD mice. Moreover, 4-HPP upregulated the relative abundance of genera Rikenella and downregulated the relative abundance of Faecalibaculum. Furthermore, 3-HPP and 4-HPP regulated lipid metabolism and ameliorated gut dysbiosis in NAFLD mice and 4-HPP was more effective than 3-HPP.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Propionates/metabolism , Diet, High-Fat , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL
2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555606

ABSTRACT

In plants, the shikimate pathway is responsible for the production of aromatic amino acids L-tryptophan, L-phenylalanine, and L-tyrosine. L-Phenylalanine is the upstream substrate of flavonoid and anthocyanin synthesis. Shikimate kinase (SK) catalyzes the phosphorylation of the C3 hydroxyl group of shikimate to produce 3-phosphate shikimate (S3P), the fifth step of the shikimate pathway. However, whether SK participates in flavonoid and anthocyanin synthesis is unknown. This study characterized the single-copy PhSK gene in the petunia (Petunia hybrida) genome. PhSK was localized in chloroplasts. PhSK showed a high transcription level in corollas, especially in the coloring stage of flower buds. Suppression of PhSK changed flower color and shape, reduced the content of anthocyanins, and changed the flavonoid metabolome profile in petunia. Surprisingly, PhSK silencing caused a reduction in the shikimate, a substrate of PhSK. Further qPCR analysis showed that PhSK silencing resulted in a reduction in the mRNA level of PhDHQ/SDH, which encodes the protein catalyzing the third and fourth steps of the shikimate pathway, showing a feedback regulation mechanism of gene expression in the shikimate pathway.


Subject(s)
Anthocyanins , Petunia , Anthocyanins/metabolism , Petunia/genetics , Petunia/metabolism , Flowers/genetics , Flavonoids/metabolism , Phenylalanine/metabolism , Gene Expression Regulation, Plant
3.
Foods ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613310

ABSTRACT

Resveratrol (RSV), a polyphenolic stilbene, has been widely studied for its protective effects against non-alcoholic fatty liver disease (NAFLD) by modulating intestinal microbiota. The microbial metabolites after RSV supplement would contribute to the bioeffects of RSV, while their impacts on NAFLD were unclear. Therefore, this study aimed to investigate the beneficial effects of the main microbial metabolites from RSV on lipid metabolism by combining in vitro and in vivo models. The mice were fed a high-fat diet and injected with RSV, 3-hydroxyphenyl propionic acid (3-HPP), and 4-HPP for 13 weeks (n = 6). Body weight, serum parameters, histological analysis, and gene expression involved in lipid metabolism were quantified. Our results suggested that 100 µM of 3-HPP and 4-HPP inhibited lipid accumulation more significantly than parent RSV in an oleic acid-induced HepG2 cell line. Furthermore, 3-HPP, 4-HPP, and RSV effectively reduced liver weight and body weight, improved hepatic steatosis, and alleviated systemic inflammation in NAFLD mice. In addition, the results of quantitative real-time PCR showed that 3-HPP and 4-HPP altered the expression of cholesterol influx and efflux genes to a stronger extent than RSV. These results indicate that 3-HPP and 4-HPP are effective in regulating hepatic lipid metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...