Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.686
Filter
1.
Bioelectrochemistry ; 159: 108753, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38833812

ABSTRACT

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.

2.
Infect Immun ; : e0013024, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842306

ABSTRACT

Coccidia of the genus Eimeria are specialized intracellular parasitic protozoa that cause severe coccidiosis when they infect their hosts. Animals infected with Eimeria develop clinical symptoms, such as anorexia, diarrhea, and hematochezia, which can even cause death. Although the current preferred regimen for the treatment of coccidiosis is antibiotics, this treatment strategy is limited by the ban on antibiotics and the growing problem of drug resistance. Therefore, the exploration of alternative methods for controlling coccidiosis has attracted much attention. Lactobacillus plantarum has been shown to have many beneficial effects. In this study, L. plantarum M2 was used as a research object to investigate the effect of L. plantarum on intestinal inflammation induced by infection with Eimeria falciformis in mice by detecting indicators, such as oocyst output, serum cytokines, and the intestinal microbiota. Compared with that in the infection group, the percent weight loss of the mice that were administered with L. plantarum M2 was significantly reduced (P < 0.05). Supplemented L. plantarum M2 and probiotics combined with diclazuril can reduce the total oocyst output significantly (P < 0.05, P < 0.001). L. plantarum M2 had outstanding performance in maintaining intestinal barrier function, and the levels of the mucin MUC1 and the tight junction protein E-cadherin were significantly elevated (P < 0.01, P < 0.05). Studies have shown that probiotic supplementation can alleviate adverse reactions after infection and significantly improve intestinal barrier function. In addition, probiotics combined with diclazuril could optimize the partial efficacy of diclazuril, which not only enhanced the effect of antibiotics but also alleviated their adverse effects. This study expands the application of probiotics, provides new ideas for alternative strategies for coccidia control, and suggests a basis for related research on lactobacilli antagonizing intracellular pathogen infection.IMPORTANCECoccidia of the genus Eimeria are specialized intracellular parasitic protozoa, and the current preferred regimen for the treatment of coccidiosis is antibiotics. However, due to antibiotic bans and drug resistance, the exploration of alternative methods for controlling coccidiosis has attracted much attention. In this work, we focused on Lactobacillus plantarum M2 and found that probiotic supplementation can alleviate adverse reactions after infection and improve intestinal barrier function. This study proposes the possibility of using lactic acid bacteria to control coccidiosis, and its potential mechanism needs further exploration.

3.
China CDC Wkly ; 6(20): 442-449, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38846357

ABSTRACT

Introduction: Coxsackievirus A6 (CVA6) has emerged as a significant pathogen responsible for severe cases of hand, foot, and mouth disease (HFMD). This study aims to delineate the demographic characteristics and analyze the viral evolution of severe HFMD associated with CVA6, thereby assisting in its surveillance and management. Methods: In this investigation, 74 strains of CVA6 were isolated from samples collected from severe HFMD cases between 2012 and 2023. The VP1 gene sequences of CVA6 were amplified and analyzed to assess population historical dynamics and evolutionary characteristics using BEAST, DnaSP6, and PopART. Results: A significant portion (94.4%) of severe CVA6-associated HFMD cases (51 out of 54, with 20 lacking age information) were children under 5 years old. Among the 74 CVA6 strains analyzed, 72 belonged to the D3a sub-genotype, while only two strains were D2 sub-genotype. The average genetic distance between VP1 sequences prior to 2015 was 0.027, which increased to 0.051 when compared to sequences post-2015. Historical population dynamics analysis indicated three significant population expansions of severe CVA6-associated HFMD during 2012-2013, 2013-2014, and 2019-2020, resulting in the formation of 65 distinct haplotypes. Consistent with the MCC tree findings, transitioning between regional haplotypes required multiple base substitutions, showcasing an increase in population diversity during the evolutionary process (from 14 haplotypes in 2013 to 55 haplotypes over the subsequent decade). Conclusions: CVA6, associated with severe HFMD, is evolving and presents a risk of outbreak occurrence. Thus, enhanced surveillance of severe HFMD is imperative.

4.
Front Public Health ; 12: 1378444, 2024.
Article in English | MEDLINE | ID: mdl-38846604

ABSTRACT

Introduction: An increasing body of research has demonstrated a correlation between pollutants from the environment and the development of cardiovascular diseases (CVD). However, the impact of volatile organic chemicals (VOC) on CVD remains unknown and needs further investigation. Objectives: This study assessed whether exposure to VOC was associated with CVD in the general population. Methods: A cross-sectional analysis was conducted utilizing data from five survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) program. We analyzed the association between urinary VOC metabolites (VOCs) and participants by multiple logistic regression models, further Bayesian Kernel Machine Regression (BKMR) models and Weighted Quantile Sum (WQS) regression were performed for mixture exposure analysis. Results: Total VOCs were found to be positively linked with CVD in multivariable-adjusted models (p for trend = 0.025), independent of established CVD risk variables, such as hypertension, diabetes, drinking and smoking, and total cholesterol levels. Compared with the reference quartile of total VOCs levels, the multivariable-adjusted odds ratios in increasing quartiles were 1.01 [95% confidence interval (CI): 0.78-1.31], 1.26 (95% CI: 1.05-1.21) and 1.75 (95% CI: 1.36-1.64) for total CVD. Similar positive associations were found when considering individual VOCs, including AAMA, CEMA, CYMA, 2HPMA, 3HPMA, IPM3 and MHBMA3 (acrolein, acrylamide, acrylonitrile, propylene oxide, isoprene, and 1,3-butadiene). In BKMR analysis, the overall effect of a mixture is significantly related to VOCs when all chemicals reach or exceed the 75th percentile. Moreover, in the WQS models, the most influential VOCs were found to be CEMA (40.30%), DHBMA (21.00%), and AMCC (19.70%). Conclusion: The results of our study indicated that VOC was all found to have a significant association with CVD when comparing results from different models. These findings hold significant potential for public health implications and offer valuable insights for future research directions.


Subject(s)
Cardiovascular Diseases , Environmental Exposure , Nutrition Surveys , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Cardiovascular Diseases/epidemiology , Cross-Sectional Studies , Male , Female , Middle Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Risk Factors , Air Pollutants/analysis , United States/epidemiology , Aged
5.
Cardiovasc Diabetol ; 23(1): 192, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844974

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is closely associated with the triglyceride glucose (TyG) index and its related indicators, particularly its combination with obesity indices. However, there is limited research on the relationship between changes in TyG-related indices and CVD, as most studies have focused on baseline TyG-related indices. METHODS: The data for this prospective cohort study were obtained from the China Health and Retirement Longitudinal Study. The exposures were changes in TyG-related indices and cumulative TyG-related indices from 2012 to 2015. The K-means algorithm was used to classify changes in each TyG-related index into four classes (Class 1 to Class 4). Multivariate logistic regressions were used to evaluate the associations between the changes in TyG-related indices and the incidence of CVD. RESULTS: In total, 3243 participants were included in this study, of whom 1761 (54.4%) were female, with a mean age of 57.62 years at baseline. Over a 5-year follow-up, 637 (19.6%) participants developed CVD. Fully adjusted logistic regression analyses revealed significant positive associations between changes in TyG-related indices, cumulative TyG-related indices and the incidence of CVD. Among these changes in TyG-related indices, changes in TyG-waist circumference (WC) showed the strongest association with incident CVD. Compared to the participants in Class 1 of changes in TyG-WC, the odds ratio (OR) for participants in Class 2 was 1.41 (95% confidence interval (CI) 1.08-1.84), the OR for participants in Class 3 was 1.54 (95% CI 1.15-2.07), and the OR for participants in Class 4 was 1.94 (95% CI 1.34-2.80). Moreover, cumulative TyG-WC exhibited the strongest association with incident CVD among cumulative TyG-related indices. Compared to the participants in Quartile 1 of cumulative TyG-WC, the OR for participants in Quartile 2 was 1.33 (95% CI 1.00-1.76), the OR for participants in Quartile 3 was 1.46 (95% CI 1.09-1.96), and the OR for participants in Quartile 4 was 1.79 (95% CI 1.30-2.47). CONCLUSIONS: Changes in TyG-related indices are independently associated with the risk of CVD. Changes in TyG-WC are expected to become more effective indicators for identifying individuals at a heightened risk of CVD.


Subject(s)
Biomarkers , Blood Glucose , Cardiovascular Diseases , Obesity , Triglycerides , Humans , Female , Middle Aged , Male , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/blood , Prospective Studies , Triglycerides/blood , Incidence , Risk Assessment , China/epidemiology , Blood Glucose/metabolism , Obesity/epidemiology , Obesity/diagnosis , Obesity/blood , Aged , Biomarkers/blood , Longitudinal Studies , Time Factors , Prognosis , Heart Disease Risk Factors , Predictive Value of Tests , Risk Factors
6.
JMIR Public Health Surveill ; 10: e53860, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829691

ABSTRACT

BACKGROUND: As one of the leading causes of child mortality, deaths due to congenital anomalies (CAs) have been a prominent obstacle to meet Sustainable Development Goal 3.2. OBJECTIVE: We conducted this study to understand the death burden and trend of under-5 CA mortality (CAMR) in Zhejiang, one of the provinces with the best medical services and public health foundations in Eastern China. METHODS: We used data retrieved from the under-5 mortality surveillance system in Zhejiang from 2012 to 2021. CAMR by sex, residence, and age group for each year was calculated and standardized according to 2020 National Population Census sex- and residence-specific live birth data in China. Poisson regression models were used to estimate the annual average change rate (AACR) of CAMR and to obtain the rate ratio between subgroups after adjusting for sex, residence, and age group when appropriate. RESULTS: From 2012 to 2021, a total of 1753 children died from CAs, and the standardized CAMR declined from 121.2 to 62.6 per 100,000 live births with an AACR of -9% (95% CI -10.7% to -7.2%; P<.001). The declining trend was also observed in female and male children, urban and rural children, and neonates and older infants, and the AACRs were -9.7%, -8.5%, -8.5%, -9.2%, -12%, and -6.3%, respectively (all P<.001). However, no significant reduction was observed in children aged 1-4 years (P=.22). Generally, the CAMR rate ratios for male versus female children, rural versus urban children, older infants versus neonates, and older children versus neonates were 1.18 (95% CI 1.08-1.30; P<.001), 1.20 (95% CI 1.08-1.32; P=.001), 0.66 (95% CI 0.59-0.73; P<.001), and 0.20 (95% CI 0.17-0.24; P<.001), respectively. Among all broad CA groups, circulatory system malformations, mainly deaths caused by congenital heart diseases, accounted for 49.4% (866/1753) of deaths and ranked first across all years, although it declined yearly with an AACR of -9.8% (P<.001). Deaths due to chromosomal abnormalities tended to grow in recent years, although the AACR was not significant (P=.90). CONCLUSIONS: CAMR reduced annually, with cardiovascular malformations ranking first across all years in Zhejiang, China. Future research and practices should focus more on the prevention, early detection, long-term management of CAs and comprehensive support for families with children with CAs to improve their survival chances.


Subject(s)
Child Mortality , Congenital Abnormalities , Humans , China/epidemiology , Male , Congenital Abnormalities/mortality , Congenital Abnormalities/epidemiology , Female , Infant , Child, Preschool , Infant, Newborn , Child Mortality/trends , Population Surveillance/methods , Data Analysis
7.
BMJ Paediatr Open ; 8(1)2024 May 31.
Article in English | MEDLINE | ID: mdl-38823802

ABSTRACT

OBJECTIVES: This study aimed to describe the genetic and clinical characteristics of paediatric cardiomyopathy in a cohort of Chinese patients. METHODS: We retrospectively reviewed the clinical history and mutation spectrum of 75 unrelated Chinese paediatric patients who were diagnosed with cardiomyopathy and referred to our hospital between January 2016 and December 2022. RESULTS: Seventy-five children with cardiomyopathy were enrolled, including 32 (42.7%) boys and 43 (57.3%) girls. Dilated cardiomyopathy was the most prevalent cardiomyopathy (61.3%) in the patients, followed by hypertrophic cardiomyopathy (17.3%), ventricular non-compaction (14.7%), restrictive cardiomyopathy (5.3%) and arrhythmogenic right ventricular cardiomyopathy (1.3%). Whole-exome sequencing and targeted next-generation sequencing identified 34 pathogenic/likely pathogenic variants and 1 copy number variant in 14 genes related to cardiomyopathy in 30 children, accounting for 40% of all patients. TNNC1 p.Asp65Asn and MYH7 p.Glu500Lys have not been reported previously. The follow-up time ranged from 2 months to 6 years. Twenty-two children died (mortality rate 29%). CONCLUSIONS: Comprehensive genetic testing was associated with a 40% yield of causal genetic mutations in Chinese cardiomyopathy cases. We found diversity in the mutation profile in different patients, which suggests that the mutational background of cardiomyopathy in China is heterogeneous, and the findings may be helpful to those counselling patients and families.


Subject(s)
Cardiomyopathies , Genetic Testing , Mutation , Humans , Male , Female , Retrospective Studies , Child , Infant , Cardiomyopathies/genetics , Child, Preschool , China/epidemiology , Exome Sequencing , Adolescent
8.
Article in English, Spanish | MEDLINE | ID: mdl-38729344

ABSTRACT

INTRODUCTION: The CHA2DS2-VASc score, used to assess the risk of left atrial appendage thrombus (LAAT) formation in patients with atrial fibrillation (AF), has limited predictive value. Moreover, transesophageal echocardiography imaging, the gold standard diagnostic method to identify thrombi, is semi-invasive. Consequently, there is a need for alternative and noninvasive diagnostic methods for LAAT risk assessment. METHODS: Deep proteomic analysis was conducted in plasma samples from 8 patients with nonvalvular AF, divided into thrombus and control groups (4 patients in each group) based on the presence or absence of LAAT. Biomarkers associated with LAAT were validated using an enzyme-linked immunosorbent assay in a cohort of 179 patients with available clinical, transthoracic, and transesophageal echocardiography data. Predictive models were developed to assess the improvement in LAAT identification. RESULTS: The LAAT group had higher CHA2DS2-VASc scores, larger LA diameter, and lower LAA flow velocities. Deep proteomic analysis identified 30 differentially expressed proteins, including myosin light chain 4, prenylcysteine oxidase 1 (PCYOX1), and decorin as potential diagnostic biomarkers of LAAT. The model showed that PCYOX1 and decorin provided an area under the curve (AUC) of 0.970 for LAAT prediction compared with 0.672 in a model including the CHA2DS2-VASc score and LAA cauliflower morphology. The incremental value of proteomic biomarkers for LAAT in patients with nonvalvular AF was further confirmed with the net reclassification improvement and integrated discrimination improvement indices. CONCLUSIONS: Protein levels of PCYOX1 and decorin improve the predictive performance for LAAT in patients with nonvalvular AF.

9.
Research (Wash D C) ; 7: 0353, 2024.
Article in English | MEDLINE | ID: mdl-38694203

ABSTRACT

Middle infrared stimulation (MIRS) and vibrational strong coupling (VSC) have been separately applied to physically regulate biological systems but scarcely compared with each other, especially at identical vibrational frequencies, though they both involve resonant mechanism. Taking cell proliferation and migration as typical cell-level models, herein, we comparatively studied the nonthermal bioeffects of MIRS and VSC with selecting the identical frequency (53.5 THz) of the carbonyl vibration. We found that both MIRS and VSC can notably increase the proliferation rate and migration capacity of fibroblasts. Transcriptome sequencing results reflected the differential expression of genes related to the corresponding cellular pathways. This work not only sheds light on the synergistic nonthermal bioeffects from the molecular level to the cell level but also provides new evidence and insights for modifying bioreactions, further applying MIRS and VSC to the future medicine of frequencies.

10.
ACS Omega ; 9(17): 19236-19249, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708219

ABSTRACT

The aim of this study is to explore the inhibition of nanocalcium oxalate monohydrate (nano-COM) crystal adhesion and aggregation on the HK-2 cell surface after the protection of corn silk polysaccharides (CSPs) and the effect of carboxyl group (-COOH) content and polysaccharide concentration. METHOD: HK-2 cells were damaged by 100 nm COM crystals to build an injury model. The cells were protected by CSPs with -COOH contents of 3.92% (CSP0) and 16.38% (CCSP3), respectively. The changes in the biochemical indexes of HK-2 cells and the difference in adhesion amount and aggregation degree of nano-COM on the cell surface before and after CSP protection were detected. RESULTS: CSP0 and CCSP3 protection can obviously inhibit HK-2 cell damage caused by nano-COM crystals, restore cytoskeleton morphology, reduce intracellular ROS level, inhibit phosphoserine eversion, restore the polarity of the mitochondrial membrane potential, normalize the cell cycle process, and reduce the expression of adhesion molecules, OPN, Annexin A1, HSP90, HAS3, and CD44 on the cell surface. Finally, the adhesion and aggregation of nano-COM crystals on the cell surface were effectively inhibited. The carboxymethylated CSP3 exhibited a higher protective effect on cells than the original CSP0, and cell viability was further improved with the increase in polysaccharide concentration. CONCLUSIONS: CSPs can protect HK-2 cells from calcium oxalate crystal damage and effectively reduce the adhesion and aggregation of nano-COM crystals on the cell surface, which is conducive to inhibiting the formation of calcium oxalate kidney stones.

11.
Angew Chem Int Ed Engl ; : e202406465, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705847

ABSTRACT

The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mA h g-1 at a record-high mass loading of 66.2 mg cm-2 and 100% capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.

12.
Heliyon ; 10(10): e31533, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803865

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system primarily mediated by CD4+ T helper cells. This study investigated the dynamic changes of natural killer (NK) cells and follicular T helper (Tfh) cells and their associations in relapsing-remitting MS patients. The findings revealed inverse relationships between NK cells and CD4+ T cells or Tfh cells. Specifically, CD56dim NK cells, not CD56bright NK cells, were negatively correlated with CD4+ T cells and Tfh cells. However, no significant correlations were found between NK cells and sNfL levels or EDSS scores. The ratio of CD56dim NK cells to circulating Tfh (cTfh) cells demonstrated superior discriminatory ability in distinguishing relapsing MS patients from healthy controls (HCs) and remitting patients, as determined by receiver operating characteristic (ROC) analysis. Following treatment with immunosuppressants or disease-modifying therapies (DMTs), a significant increase in the CD56dim NK/cTfh ratio was observed. These findings suggest that the CD56dim NK/cTfh ratio holds promise as a prognostic indicator for clinical relapse and treatment response in MS.

14.
Toxicol Res (Camb) ; 13(3): tfae072, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737339

ABSTRACT

Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor ß1 (TGF-ß1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-ß1/Smad2/3 pathways.

15.
ACS Biomater Sci Eng ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752382

ABSTRACT

Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.

16.
Small ; : e2400654, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752582

ABSTRACT

Benefit from the deeper penetration of mechanical wave, ultrasound (US)-based sonodynamic therapy (SDT) executes gratifying efficacy in treating deep-seated tumors. Nevertheless, the complicated mechanism of SDT undeniably hinders the exploration of ingenious sonosensitizers. Herein, a receptor engineering strategy of aggregation-induced emission (AIE) sonosensitizers (TPA-Tpy) with acceptor (A)-donor (D)-A' structure is proposed, which inspects the effect of increased cationizations on US sensitivity. Under US stimulation, enhanced cationization in TPA-Tpy improves intramolecular charge transfer (ICT) and accelerates charge separation, which possesses a non-negligible promotion in type I reactive oxygen species (ROS) production. Moreover, abundant ROS-mediated mitochondrial oxidative stress triggers satisfactory immunogenic cell death (ICD), which further promotes the combination of SDT and ICD. Subsequently, subacid pH-activated nanoparticles (TPA-Tpy NPs) are constructed with charge-converting layer (2,3-dimethylmaleic anhydride-poly (allylamine hydrochloride)-polyethylene glycol (DMMA-PAH-PEG)) and TPA-Tpy, achieving the controllable release of sonosensitizers. In vivo, TPA-Tpy-mediated SDT effectively initiates the surface-exposed of calreticulin (ecto-CRT), dendritic cells (DCs) maturation, and CD8+ T cell infiltration rate through enhanced ROS production, achieving suppression and ablation of primary and metastatic tumors. This study provides new opinions in regulating acceptors with eminent US sensitization, and brings a novel ICD sono-inducer based on SDT to realize superior antitumor effect.

17.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774946

ABSTRACT

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

18.
Article in English | MEDLINE | ID: mdl-38779758

ABSTRACT

OBJECTIVE: Zn2+ levels are reported to be correlated with kidney function.We explored the significance of Zn2+ in sepsis-induced acute kidney injury (SI-AKI) through the regulation of SIRT7 activity. METHODS: The sepsis rat model was established by cecal ligation and perforation (CLP), and intraperitoneally injected with ZnSO4 or SIRT7 inhibitor 97491 (SIRT7i), with renal tubular injury assessed by H&E staining. In vitro, human renal tubular epithelial cells (HK-2) were induced with lipopolysaccharide to obtain a renal injury cell model, followed by ZnSO4 or SIRT7i and autophagy inhibitor (3-MA) treatment. Interleukin (IL)-1ß, IL-18, reactive oxygen species (ROS), Parkin acetylation level, kidney injury molecule 1 (KIM-1) and Neutrophil gelatinase-associated lipocalin (NGAL) expression levels were determined. The renal tubule injury, inflammation condition, and pyroptosis-related and autophagy-related protein levels were assessed. The pyroptosis in kidney tissues and autophagosome formation were observed by transmission electron microscopy. RESULTS: Zn2+ alleviated renal injury in CLP rats, and inhibited pyroptosis and its related protein levels by inhibiting SIRT7 activity in septic rat renal tissues. In vitro, Zn2+ increased HK-2 cell viability, and reduced KIM-1, NGAL, IL-1ß, IL-18, NLRP3 inflammasome, Cleaved Caspase-1 and GSDMD-N levels and pyroptotic cell number. Zn2+ increased autophagosome number and LC3BII/LC3BI ratio, and decreased TOM20, TIM23, P62 and the mitochondrial ROS levels. Zn2+ increased Parkin acetylation by repressing SIRT7 activity. Inhibiting mitophagy partially averted Zn2+-inhibited NLRP3 inflammasome activation and apoptosis in HK-2 cells. CONCLUSION: Zn2+ up-regulated Parkin acetylation by repressing SIRT7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving SI-AKI.

19.
Eur Radiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780765

ABSTRACT

OBJECTIVES: This study aimed to explore the endothelialization process and assess the potential association between endothelialization and peri-device leak (PDL) following Watchman implantation via a quantitative method. METHODS: This is a single-center retrospective study of consecutive patients undergoing LAAO between December 2015 and November 2021. Device endothelialization, compared between PDL and non-PDL group, were quantitatively analyzed based on hypoattenuated thickening in cardiac computed tomography angiography (CCTA). Advancement in endothelialization over time were explored using the Cochran-Armitage test and generalized estimating equation approach. Potential risk factors of delayed endothelialization were analyzed using the Cox proportional-hazards model. RESULTS: A total of 172 patients (mean age, 68 years ± 10 [standard deviation], 114 men) were finally included. The average endothelialization ratio of the study population was 89.8 ± 7.2 percent. In the follow-up period of postprocedural 3 months to more than 12 months, an incremental trend of endothelialization over time was observed with the ratio of 85.8 ± 8.0, 89.6 ± 7.6, 92.2 ± 4.5, 94.3 ± 2.9 percent, respectively (p < 0.0001). Notably, patients without PDL exhibited a swifter advancement in endothelialization compared to those with PDL, irrespective of device size. The multivariable Cox regression model showed that PDL (HR = 2.113, 95%CI: 1.300-3.435, p = 0.003), DSP (HR = 1.717, 95%CI: 1.113-2.647, p = 0.014) were independent risk factors of delayed endothelialization. CONCLUSION: CCTA holds promise as an effective means of quantitatively assessing device endothelialization. Endothelialization advanced gradually over time, with PDL potentially impeding device endothelialization. CLINICAL RELEVANCE STATEMENT: A comprehensive understanding of the correlation between endothelialization ratio, time, and residual shunt can establish a more dependable foundation for determining the appropriate anticoagulation treatment following left atrial appendage closure. KEY POINTS: Current recommendations for postleft atrial appendage occlusion anti-platelet and anticoagulation therapy are based on animal studies. Cardiac computed tomography angiography (CCTA) combined with the UNet neural network model enables the quantitative assessment of device endothelialization. This technique will allow for additional studies to better understand device endothelialization to optimize treatments in this population.

20.
Insects ; 15(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786925

ABSTRACT

Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...