Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Psychol (Amst) ; 248: 104346, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870687

ABSTRACT

Previous studies have found that inhibitory control plays an important role in non-symbolic numerical processing. However, this role may be influenced by the visual cue control method or the stimulus' presentation time. We investigated these questions by conducting three experiments using a priming paradigm to compare the level of inhibitory control in a sequential dot comparison task with single-dimensional and multi-dimensional control of visual cues under two presentation time conditions (300 ms and 1500 ms). We found that neither the method of visual cue control nor the presentation time of dot arrays affected the level of inhibitory control in the dot comparison task. These results reveal a stable role of inhibitory control in non-symbolic numerical processing, providing further evidence for integrating numerical and visual information during non-symbolic numerical processing.

2.
J Hazard Mater ; 469: 133886, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38581107

ABSTRACT

Oxidative desulfurization (ODS) emerges as a critical player in enhancing efficient fuel desulfurization and promoting sustainable clean energy. Metal-organic frameworks (MOFs) show great potential as ODS catalysts because of their exceptional porosity and versatility. This study explores the use of amorphous metal-organic frameworks (aMOFs), which combine MOFs' structural advantages with unique properties of amorphous materials, to enhance catalytic efficiency in ODS. Traditional methods for synthesizing MOFs rely on solvent-thermal or solvent-free methods, each with limitations in environmental impact or scalability. To address this, we introduce a novel strategy utilizing a small quantity of benzoic acid (BA) modifier to facilitate the solvent-free, one-pot, mechanical synthesis of amorphous zirconium terephthalate (GU-2BA-3h). The resulting GU-2BA-3h demonstrates exceptional ODS performance, efficiently removing 1000 ppm of dibenzothiophene (DBT) in just 6 min at 60 °C. Amorphous GU-2BA-3h features an expanded external surface area, increased acidic sites, and exceptional stability, resulting in a high turnover frequency (19.6 h-1) and outstanding catalytic activity (53.2 mmol g-1 h-1), establishing it as a highly efficient ODS catalyst. This remarkable performance arises from the formation of dangling carboxyl groups and active metal sites due to the competitive coordination of benzoic acid with the linker. Experimental evidence confirms that these carboxyl groups and exposed Zr-OH sites interact with oxidants, generating hydroxyl radicals that effectively eliminate sulfur-containing compounds. Furthermore, the methodology exhibits universality in constructing amorphous Zr-based MOFs, and provides an eco-friendly, cost-effective route for efficient ODS catalyst production.

3.
J Exp Psychol Gen ; 153(5): 1374-1387, 2024 May.
Article in English | MEDLINE | ID: mdl-38647481

ABSTRACT

A subcortical pathway is thought to have evolved to facilitate fear information transmission, but direct evidence for its existence in humans is lacking. In recent years, rapid, preattentive, and preconscious fear processing has been demonstrated, providing indirect support for the existence of the subcortical pathway by challenging the necessity of canonical cortical pathways in fear processing. However, direct support also requires evidence for the involvement of subcortical regions in fear processing. To address this issue, here we investigate whether fear processing reflects the characteristics of the subcortical structures in the hypothesized subcortical pathway. Using a monocular/dichoptic paradigm, Experiment 1 demonstrated a same-eye advantage for fearful but not neutral face processing, suggesting that fear processing relied on monocular neurons existing mainly in the subcortex. Experiments 2 and 3 further showed insensitivity to short-wavelength stimuli and a nasal-temporal hemifield asymmetry in fear processing, both of which were functional characteristics of the superior colliculus, a key hub of the subcortical pathway. Furthermore, all three experiments revealed a low spatial frequency selectivity of fear processing, consistent with magnocellular input via subcortical neurons. These results suggest a selective involvement of subcortical structures in fear processing, which, together with the indirect evidence for automatic fear processing, provides a more complete picture of the existence of a subcortical pathway for fear processing in humans. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Facial Expression , Facial Recognition , Fear , Humans , Fear/physiology , Male , Female , Adult , Young Adult , Facial Recognition/physiology , Superior Colliculi/physiology
4.
Sci Total Environ ; 864: 161116, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36566852

ABSTRACT

In this study, the hydration mechanism and environmental impacts of blended cements with the co-combustion ash of rice husk and sewage sludge (CCA) were investigated and compared to those of blended cements with sewage sludge ash (SSA). CCA possesses lower phosphate contents than SSA, leading to lower inhibition effects on early hydration of cement clinker. Moreover, the pozzolanic activity of CCA is higher than that of SSA. Thus, more hydration products from the pozzolanic reaction of CCA are generated in CCA-based blended cements. Compared to the matrix of SSA-based blended cements, that of their CCA-based counterpart is filled with more hydration products, which promotes porosity refinement and strength development of CCA-based blended cements at later ages. CCA-based blended cements exhibit greater environmental benefits than SSA-based blended cements because fossil consumption and toxic substance emissions during the co-combustion of rice husk and sewage sludge is lower than that during the mono-combustion of sewage sludge.


Subject(s)
Oryza , Sewage , Environment , Coal Ash
5.
J Colloid Interface Sci ; 634: 563-574, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549205

ABSTRACT

Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm-2 for OER and 116 mV@10 mA cm-2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm-2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.


Subject(s)
Electrolysis , Electrons , Electron Transport , Catalysis , Hydrogen , Nickel , Oxygen
6.
J Environ Manage ; 326(Pt A): 116690, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372035

ABSTRACT

In this research, an economical and eco-friendly ultra-high performance concrete (UHPC) with compressive strength of more than 120 MPa was prepared with the dosage of sewage sludge ash (SSA) at 8 wt%. The results indicate that the addition of SSA has an adverse influence on the workability of UHPC samples due to its special morphology. Furthermore, the microstructure and phase assemblage of SSA-based UHPC were determined and the results show that SSA inhibits the early hydration of cement clinker, while promotes the precipitation of additional hydration products at later curing ages due to its pozzolanic reaction. The pore structure analysis of SSA-based UHPC determined by mercury intrusion porosimetry indicates that the addition of SSA increases the cumulative pore volume, while decreases the large pore volume of UHPC. Economic and environmental analysis indicates that using SSA-based UHPC greatly reduces the unit cost and the impacts on the environment.


Subject(s)
Construction Materials , Sewage , Sewage/chemistry , Construction Materials/analysis , Compressive Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...