Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.051
Filter
1.
Opt Lett ; 49(11): 2958-2961, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824302

ABSTRACT

Mode converters, crucial elements within photonic integrated circuits (PICs) designed for multimode optical transmission and switching systems, present a challenge due to their bulky structures in thin-film lithium niobate (TFLN) integrated platforms, which are incompatible with the compact and efficient nature desired for dense PICs. In this work, we propose TE1-TE0, TE2-TE0, and TE3-TE0 mode converters in shallowly etched TFLN, within small footprints. The experimental results show that the insertion loss is 0.4 dB, 0.6 dB, and 0.5 dB for the compact TE1-TE0, TE2-TE0, and TE3-TE0 mode converters, respectively, and these devices can be operated within a wide 1 dB bandwidth (BW) over 100 nm. This work facilitates the development of low-loss, broadband, and compact monolithically integrated photonic devices for future multimode communication networks in TFLN integrated platforms.

2.
Phytochemistry ; 225: 114185, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876164

ABSTRACT

Five undescribed leucosesterterpane sesterterpenoids, leucosceptrines A-E, two undescribed penta-nor-leucosesterterpane (C20) sesterterpenoids, nor-leucosceptrines A and B, and three known analogues, were obtained from the aerial parts of Leucosceptrum canum of Chinese origin. Leucosceptrines A-C are the first examples of leucosesterterpane-type sesterterpenoids with unclosed dihydropyran rings and reverse configurations at chiral centers C-4 and/or C-12. Nor-leucosceptrines A and B possesses an unusual penta-nor-leucosesterterpane skeleton. Their structures were unambiguously elucidated through comprehensive spectroscopic analyses and single-crystal X-ray diffraction. A plausible biogenetic pathway for these sesterterpenoids was proposed. The immunosuppressive effects of these isolates on the secretion of the cytokine IFN-γ by T cells stimulated with anti-CD3/CD28 monoclonal antibodies were observed with different potencies.

3.
Phytochemistry ; : 114188, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878943

ABSTRACT

Phytochemical investigation on the fruits of Cydonia oblonga Mill., a traditional Uighur medicine, led to the isolation of seven undescribed and nine known megastigmane glycosides. Their structures including absolute configurations were characterized by an extensive analysis of spectroscopic data including HRESIMS and NMR, combined with ECD calculations. Additionally, compounds 1, 2, 4, and 6‒16 exhibited anti-inflammatory activity by inhibiting the secretion of cytokines TNF-α and IL-6 in RAW264.7 cells induced by lipopolysaccharides (LPS) with inhibitory rates of 10.79%‒44.58% at 20 µM.

4.
iScience ; 27(6): 110006, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868202

ABSTRACT

Apolipoprotein E (apoE) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit a substantial upregulation of apoE in AD-associated circumstances, despite astrocytes being the primary source of apoE expression and secretion in the brain. Although the role of astrocytic apoE in the brain has been extensively investigated, it remains unclear that whether and how apoE particles generated from astrocytes and microglia differ in biological characteristic and function. Here, we demonstrate the differences in size between apoE particles generated from microglia and astrocytes. Microglial apoE particles impair neurite growth and synapses, and promote neuronal senescence, whereas depletion of GPNMB (glycoprotein non-metastatic melanoma protein B) in microglial apoE particles mitigated these deleterious effects. In addition, human APOE4-expressing microglia are more neurotoxic than APOE3-bearing microglia. For the first time, these results offer concrete evidence that apoE particles produced by microglia are involved in neuronal senescence and toxicity.

5.
Phytochemistry ; 225: 114173, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851474

ABSTRACT

Saponins are bioactive components of many medicinal plants, possessing complicated chemical structures and extensive pharmacological activities, but the production of high-value saponins remains challenging. In this study, a 6'-O-glucosyltransferase PpUGT7 (PpUGT91AH7) was functionally characterized from Paris polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz., which can transfer a glucosyl group to the C-6' position of diosgenin-3-O-rhamnosyl-(1 â†’ 2)-glucoside (1), pennogenin-3-O-rhamnosyl-(1 â†’ 2)-glucoside (2), and diosgenin-3-O-glucoside (5). The KM and Kcat values of PpUGT7 towards the substrate 2 were 8.4 µM and 2 × 10-3 s-1, respectively. Through molecular docking and site-directed mutagenesis, eight residues were identified to interact with the sugar acceptor 2 and be crucial for enzyme activity. Moreover, four rare ophiopogonins and ginsenosides were obtained by combinatorial biosynthesis, including an undescribed compound ruscogenin-3-O-glucosyl-(1 â†’ 6)-glucoside (10). Firstly, two monoglycosides 9 and 11 were generated using a known sterol 3-O-ß-glucosyltransferase PpUGT80A40 with ruscogenin (7) and 20(S)-protopanaxadiol (8) as substrates, which were further glycosylated to the corresponding diglycosides 10 and 12 under the catalysis of PpUGT7. In addition, compounds 7-11 were found to show inhibitory effects on the secretion of TNF-α and IL-6 in macrophages RAW264.7. The findings provide valuable insights into the enzymatic glycosylation processes in the biosynthesis of bioactive saponins in P. polyphylla var. yunnanensis, and also serve as a reference for utilizing UDP-glycosyltransferases to construct high-value or rare saponins for development of new therapeutic agents.

6.
Biomed Chromatogr ; : e5922, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867488

ABSTRACT

This study aims to explore the pharmacological substance basis of Qi Ge Decoction (QG) in antihyperlipidemia through a combination of metabolomics and serum pharmacochemistry. We used ultra-performance liquid chromatography quadrupole-time-of-flight/MS (UPLC Q-TOF/MS) to analyze and identify the chemical constituents of QG in vitro and in blood chemical components. The metabolomics technology was used to analyze serum biomarkers of QG in preventing and treating hyperlipidemia. We constructed a mathematical model of the relationship between constituents absorbed into the blood and endogenous biomarkers and explored the potential therapeutic application of QG for the prevention and treatment of hyperlipidemia. Compared with the model group, the levels of total cholesterol and triglyceride in the QG group were significantly decreased (P < 0.01). A total of 12 chemical components absorbed into the blood were identified, and 48 biomarkers of the hyperlipidemia model were obtained from serum metabolomic analysis, of which 15 metabolites were backregulated after QG intervention. Puerarin, hesperetin, puerarin xyloside, calycosin, and monohydroxy-tetramethoxyflavone had a high correlation with the biomarkers regulated by QG. This study elucidated the material basis of QG in the intervention of hyperlipidemia, thereby facilitating future research aimed at further revealing the pharmacodynamic material basis of QG's antihyperlipidemic effects.

7.
Chempluschem ; : e202400286, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858773

ABSTRACT

n-Type organic conductive molecules play a significant role in organic electronics. Self-doping can increase the carrier concentration within the materials to improve the conductivity without the need for additional intentional dopants. This review focuses on the various strategies employed in the synthesis of self-doped n-type molecules, and provides an overview of the doping mechanisms. By elucidating these mechanisms, the review aims to establish the relationship between molecular structure and electronic properties. Furthermore, the review outlines the current applications of self-doped n-type molecules in the field of organic electronics, highlighting their performance and potential in various devices. It also offers insights into the future development of self-doped materials.

8.
Technol Health Care ; 32(S1): 287-297, 2024.
Article in English | MEDLINE | ID: mdl-38759057

ABSTRACT

BACKGROUND: Prosthetic hands have the potential to replace human hands. Using prosthetic hands can help patients with hand loss to complete the necessary daily living actions. OBJECTIVE: This paper studies the design of a bionic, compact, low-cost, and lightweight 3D printing humanoid hand. The five fingers are underactuated, with a total of 9 degrees of freedom. METHODS: In the design of an underactuated hand, it is a basic element composed of an actuator, spring, rope, and guide system. A single actuator is providing power for five fingers. And the dynamic simulation is carried out to calculate the motion trajectory effect. RESULTS: In this paper, the driving structure of the ultrasonic motor was designed, and the structural size of the ultrasonic motor vibrator was determined by modal and transient simulation analysis, which replace the traditional brake, realize the lightweight design of prosthetic hand, improve the motion accuracy and optimize the driving performance of prosthetic hand. CONCLUSIONS: By replacing traditional actuators with new types of actuators, lightweight design of prosthetic hands can be achieved, improving motion accuracy and optimizing the driving performance of prosthetic hands.


Subject(s)
Artificial Limbs , Hand , Prosthesis Design , Humans , Printing, Three-Dimensional , Computer Simulation , Biomechanical Phenomena
9.
Diabetologia ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772919

ABSTRACT

AIMS/HYPOTHESIS: Many studies have examined the relationship between plasma metabolites and type 2 diabetes progression, but few have explored saliva and multi-fluid metabolites. METHODS: We used LC/MS to measure plasma (n=1051) and saliva (n=635) metabolites among Puerto Rican adults from the San Juan Overweight Adults Longitudinal Study. We used elastic net regression to identify plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting baseline HOMA-IR in a training set (n=509) and validated these scores in a testing set (n=340). We used multivariable Cox proportional hazards models to estimate HRs for the association of baseline metabolomic scores predicting insulin resistance with incident type 2 diabetes (n=54) and prediabetes (characterised by impaired glucose tolerance, impaired fasting glucose and/or high HbA1c) (n=130) at 3 years, along with regression from prediabetes to normoglycaemia (n=122), adjusting for traditional diabetes-related risk factors. RESULTS: Plasma, saliva and multi-fluid plasma-saliva metabolomic scores predicting insulin resistance included highly weighted metabolites from fructose, tyrosine, lipid and amino acid metabolism. Each SD increase in the plasma (HR 1.99 [95% CI 1.18, 3.38]; p=0.01) and multi-fluid (1.80 [1.06, 3.07]; p=0.03) metabolomic scores was associated with higher risk of type 2 diabetes. The saliva metabolomic score was associated with incident prediabetes (1.48 [1.17, 1.86]; p=0.001). All three metabolomic scores were significantly associated with lower likelihood of regressing from prediabetes to normoglycaemia in models adjusting for adiposity (HRs 0.72 for plasma, 0.78 for saliva and 0.72 for multi-fluid), but associations were attenuated when adjusting for lipid and glycaemic measures. CONCLUSIONS/INTERPRETATION: The plasma metabolomic score predicting insulin resistance was more strongly associated with incident type 2 diabetes than the saliva metabolomic score. Only the saliva metabolomic score was associated with incident prediabetes.

10.
Diabetes Metab Syndr Obes ; 17: 2121-2133, 2024.
Article in English | MEDLINE | ID: mdl-38803641

ABSTRACT

Purpose: Elevated urine albumin-to-creatinine ratio (UACR) is an established risk factor for microvascular disease in the general population. However, it is unclear whether UACR is associated with arterial stiffness in diabetes. We aimed to assess the relationship between UACR levels and the risk of arterial stiffness in patients with diabetes. Methods: From July 2021 to February 2023, a total of 1039 participants were assessed for the risk of arterial stiffness, which was evaluated by brachial-ankle pulse wave velocity (baPWV). The value of UACR≥30 mg/g was defined as high UACR. The UACR level had an abnormal distribution and was log2-transformed for analyses to reduce skewness and volatility. High baPWV was evaluated as categorical variables divided by the highest quartile of the values by sex. The relationship between UACR and arterial stiffness was analyzed by linear curve fitting analyses. Multiple logistic regression models were used to analyze the crude and adjusted odds ratio (OR) of UACR for high baPWV with 95% confidence interval (CI). In addition to applying non-adjusted and multivariate-adjusted models, interaction and stratified analyses were also carried out. Results: The baPWV level was significantly higher in the high UACR group compared with that in the normal UACR group (1861.84 ± 439.12 cm/s vs 1723.13 ± 399.63 cm/s, p<0.001). Adjusted smoothed plots suggested that there are linear relationships between log2-transformed UACR and high baPWV, and Spearman correlation coefficient was 0.226 (0.176-0.276, p<0.001). The OR (95% CI) between log2-transformed UACR and high baPWV were 1.26 (1.19-1.33, p<0.001), and 1.16 (1.08-1.25, p<0.001) respectively in diabetic patients before and after adjusting for potential confounders. Conclusion: The elevated UACR was associated with arterial stiffness in Chinese patients with diabetes.


1. The mean baPWV level was significantly higher in the high UACR group compared with that in the normal UACR group.2. The sex-specific hierarchical analysis revealed that baPWV levels and the incidence of high baPWV were significantly elevated with increased UACR.3. Curvilinear relationships between log2-transformed UACR and the risk of high baPWV.4. Positive association between UACR and high baPWV in patients with diabetes.

11.
Bioengineering (Basel) ; 11(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790297

ABSTRACT

Dysphagia is a pervasive health issue that impacts diverse demographic groups worldwide, particularly the elderly, stroke survivors, and those suffering from neurological disorders. This condition poses substantial health risks, including malnutrition, respiratory complications, and increased mortality. Additionally, it exacerbates economic burdens by extending hospital stays and escalating healthcare costs. Given that this disorder is frequently underestimated in vulnerable populations, there is an urgent need for enhanced diagnostic and therapeutic strategies. Traditional diagnostic tools such as the videofluoroscopic swallowing study (VFSS) and flexible endoscopic evaluation of swallowing (FEES) require interpretation by clinical experts and may lead to complications. In contrast, non-invasive sensors offer a more comfortable and convenient approach for assessing swallowing function. This review systematically examines recent advancements in non-invasive swallowing function detection devices, focusing on the validation of the device designs and their implementation in clinical practice. Moreover, this review discusses the swallowing process and the associated biomechanics, providing a theoretical foundation for the technologies discussed. It is hoped that this comprehensive overview will facilitate a paradigm shift in swallowing assessments, steering the development of technologies towards more accessible and accurate diagnostic tools, thereby improving patient care and treatment outcomes.

12.
J Plast Surg Hand Surg ; 59: 72-76, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769787

ABSTRACT

BACKGROUND: The purpose of this article is to introduce a method that combines limited debridement and ReCell® autologous cell regeneration techniques for the treatment of deep second-degree burn wounds. METHOD: A total of 20 patients suffered with deep second-degree burns less than 10% of total body surface area (TBSA) who were admitted to our department, from June 2019 to June 2021, participated in this study. These patients first underwent limited debridement with an electric/pneumatic dermatome, followed by the ReCell® technique for secondary wounds. Routine treatment was applied to prevent scarring after the wound healed. Clinical outcomes were scored using the Vancouver Scar Scale (VSS). RESULTS: All wounds of the patients healed completely. One patient developed an infection in the skin graft area and finally recovered by routine dressing changes. The average healing time was 12 days (range: 10-15 days). The new skin in the treated area was soft and matched the colour of the surrounding normal skin and the VSS score ranged from 3~5 for each patient. Of the 20 patients, 19 were very satisfied and 1 was satisfied. CONCLUSIONS: This article reports a useful treatment method that combines electric dermatome-dependent limited debridement and the ReCell® technique for the treatment of deep second-degree burn wounds. It is a feasible and effective strategy that is easy to implement and minimally invasive, and it is associated with a short healing time, mild scar formation and little damage to the donor skin area.


Subject(s)
Burns , Debridement , Skin Transplantation , Humans , Burns/surgery , Burns/therapy , Debridement/methods , Male , Adult , Female , Skin Transplantation/methods , Middle Aged , Young Adult , Wound Healing/physiology , Cicatrix , Adolescent , Polyesters
13.
Clin Chem Lab Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815136

ABSTRACT

OBJECTIVES: This study aimed to deliver biological variation (BV) estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping (memory T/B cells, regulatory T cells, etc.) and classical, intermediate, and nonclassical monocyte subsets based on the full spectrum flow cytometry (FS-FCM) and a Biological Variation Data Critical Appraisal Checklist (BIVAC) design. METHODS: Samples were collected biweekly from 60 healthy Chinese adults over 10 consecutive two-week periods. Each sample was measured in duplicate within a single run for lymphocyte deep immunophenotyping and monocyte subset determination using FS-FCM, including the percentage (%) and absolute count (cells/µL). After trend adjustment, a Bayesian model was applied to deliver the within-subject BV (CVI) and between-subject BV (CVG) estimates with 95 % credibility intervals. RESULTS: Enumeration (% and cells/µL) for 25 types of lymphocyte deep immunophenotyping and three types of monocyte subset percentages showed considerable variability in terms of CVI and CVG. CVI ranged from 4.23 to 47.47 %. Additionally, CVG ranged between 10.32 and 101.30 %, except for CD4+ effector memory T cells re-expressing CD45RA. No significant differences were found between males and females for CVI and CVG estimates. Nevertheless, the CVGs of PD-1+ T cells (%) may be higher in females than males. Based on the desired analytical performance specification, the maximum allowable imprecision immune parameter was the CD8+PD-1+ T cell (cells/µL), with 23.7 %. CONCLUSIONS: This is the first study delivering BV estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping, along with classical, intermediate, and nonclassical monocyte subsets, using FS-FCM and adhering to the BIVAC design.

14.
Cell Rep Med ; 5(5): 101573, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776874

ABSTRACT

Epstein-Barr virus (EBV) is linked to various malignancies and autoimmune diseases, posing a significant global health challenge due to the lack of specific treatments or vaccines. Despite its crucial role in EBV infection in B cells, the mechanisms of the glycoprotein gp42 remain elusive. In this study, we construct an antibody phage library from 100 EBV-positive individuals, leading to the identification of two human monoclonal antibodies, 2B7 and 2C1. These antibodies effectively neutralize EBV infection in vitro and in vivo while preserving gp42's interaction with the human leukocyte antigen class II (HLA-II) receptor. Structural analysis unveils their distinct binding epitopes on gp42, different from the HLA-II binding site. Furthermore, both 2B7 and 2C1 demonstrate potent neutralization of EBV infection in HLA-II-positive epithelial cells, expanding our understanding of gp42's role. Overall, this study introduces two human anti-gp42 antibodies with potential implications for developing EBV vaccines targeting gp42 epitopes, addressing a critical gap in EBV research.


Subject(s)
Antibodies, Monoclonal , Epitopes , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Mice , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Viral Proteins/immunology , B-Lymphocytes/immunology
15.
J Org Chem ; 89(11): 7408-7416, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38787343

ABSTRACT

A halide-free ionic pair organocatalyst was proposed for the cycloaddition of CO2 into epoxide reactions. Cholinium pyridinolate ionic pairs with three different substitution positions were designed. Under conditions of temperature of 120 °C, pressure of 1 MPa CO2, and catalyst loading of 5 mol %, the optimal catalyst cholinium 4-pyridinolate ([Ch]+[4-OP]-) was employed. After a reaction time of 12 h, styrene oxide was successfully converted into the corresponding cyclic carbonate, and its selectivity was improved to 90%. A series of terminal epoxides were converted into cyclic carbonates within 12 h, with yields ranging from 80 to 99%. The proposed mechanism was verified by 1H NMR and 13C NMR titrations. Cholinium cations act as a hydrogen bond donor to activate epoxides, and pyridinolate anions combine with carbon dioxide to form intermediate carbonate anions that attack epoxides as nucleophiles and lead to ring opening. In summary, a halide-free ionic pair organocatalyst was designed and the catalytic mechanism in the cycloaddition of CO2 into epoxides reactions was proposed.

16.
J Cancer ; 15(10): 3010-3023, 2024.
Article in English | MEDLINE | ID: mdl-38706909

ABSTRACT

Given the heterogeneity of tumors, there is an urgent need for accurate prognostic parameters in prostate cancer (PCa) patients. Lipid metabolism (LM) reprogramming and oxidative stress (OS) play a vital role in the progression of PCa. In this work, we identified five LM-OS-related genes (including ACOX2, PPRAGC1A, PTGS1, PTGS2, and HAO1) associated with the biochemical recurrence (BCR) of PCa. Subsequently, a prognostic signature was established based on these five genes. Kaplan-Meier survival estimates, receiver operating characteristic curves, and relationship analysis between risk score and clinical characters were applied to measure the robustness of the signature in an external cohort. A nomogram of risk score combined with clinical characteristics was constructed for clinical application. Functional enrichment analysis suggested that the underlying mechanism related to the signature included the calcium signaling, lipid transport, and cell cycle signaling pathways. Furthermore, WEE1 inhibitor was identified as a potential agent related to the cell cycle for high-risk patients. The mRNA expression and the prognostic value of the five genes were determined, and ACOX2 was identified as the key gene related to the prognostic signature. The protein expression of ACOX2 was measured in a prostate tissue microarray through an immunohistochemistry assay, confirming the bioinformatics results. By constructing the ACOX2-overexpressing PCa cell lines PC-3 and 22Rv1, the biological function of PCa cells was investigated. The cell viability, colony formation, migration, and invasion ability of PCa cell lines overexpressing ACOX2 were hindered. Decreased cellular lipid content and elevated cellular ROS content were observed in ACOX2-overexpressing PCa cell lines with reduced G2/M phases. In conclusion, this work presents the first prognostic signature specifically focused on LM-OS for PCa. ACOX2 could serve as a favorable indicator for the BCR in PCa. Further experiments are required to identify the potential underlying mechanism.

17.
Opt Lett ; 49(9): 2485-2488, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691750

ABSTRACT

Dynamically manipulating the spectra and polarization properties of thermal radiation is the key to counter an infrared polarization imaging system (IPIS) under the different background environments. In this Letter, we propose a phase-change metasurface thermal emitter (PCMTE) composed of vanadium dioxide (VO2) dipole antenna arrays to dynamically manipulate polarized radiation spectra in the long-wave infrared (LWIR) region of 8-14 µm. During the thermally induced and reversible insulator-to-metal transition (IMT) in VO2, by simulating the LWIR images at different polarization angles for the PCMTE and background plates, the PCMTE can realize dynamically tunable LWIR camouflage; then, their degree of linear polarization (DoLP) can be calculated, which can demonstrate that the PCMTE can also achieve dynamically tunable LWIR polarization camouflage at the specific radiation angles and backgrounds. Our proposed PCMTE provides an effective scheme for adaptive IR polarization camouflage.

18.
J Nat Med ; 78(3): 633-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704807

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.


Subject(s)
Bile Acids and Salts , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Tumor Microenvironment , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Mice , Bile Acids and Salts/metabolism , Tumor Microenvironment/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Inflammation/drug therapy , Inflammation/metabolism
19.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

20.
Chin J Traumatol ; 27(3): 134-146, 2024 May.
Article in English | MEDLINE | ID: mdl-38570272

ABSTRACT

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.


Subject(s)
Drug Carriers , Exosomes , Mesenchymal Stem Cells , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Humans , Mesenchymal Stem Cells/metabolism , Animals , Apoptosis , Mesenchymal Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...