Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687593

ABSTRACT

Electrode induction melting gas atomization (EIGA) technology is a commonly used and effective method for producing spherical metal powders in additive manufacturing. In this paper, we aim to describe the atomization and fragmentation of liquid sheets from a typical swirl nozzle and highlight the primary breakup of titanium alloy powder production. We developed a computational fluid dynamics (CFD) approach to simulate the primary disintegration process of the molten metal using the volume of fluid (VOF) method coupled with the large eddy simulation turbulence model (LES). Our numerical results show that high-speed spraying creates supersonic airflow in the atomization chamber. Recirculation is the main area where primary atomization occurs. The formation of the recirculation zone is the direct driving force that allows atomization to proceed, which will increase turbulence intensity and achieve higher atomization efficiency. VOF-LES simulation can capture some qualitative results such as conical melt-sheet shape, wave formation, ligament formation, and perforation formation. The primary droplet size mainly ranges between 200 and 800 µm. Finally, with increasing gas pressure, the particle size of the atomized powder gradually decreases, and the particle size distribution becomes narrower.

2.
Materials (Basel) ; 15(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35591362

ABSTRACT

Vacuum induction melting gas atomization (VIGA) has evolved as an important production technique of superalloy powders used in additive manufacturing. However, the development of powder preparation techniques is limited because the crushing process of gas-atomized metal melt is difficult to characterize by conventional experimental methods. Herein, we report the application of computational fluid dynamics to simulate the breaking behavior of droplets in the process of preparing nickel-based superalloy powders by VIGA, as well as the results on the effect of gas pressure on the atomization process and powder particle size distribution of metal melt. In the process of primary atomization, the crushing morphology of superalloy melt shows an alternate transformation of umbrella shapes and inverted mushroom cloud shapes, and with the increase in atomization pressure, the disorder of the two-phase flow field increases, which is conducive to sufficient breakage of the melt. Most importantly, in the process of secondary atomization and with the increasing atomization pressure, the particle size distribution becomes narrower, the median particle diameter and average particle size decrease, and the decreasing trend of the particle size increases gradually. The simulation results are compliant with the performed nickel-based superalloy powder preparation tests. This study provides insight into the production and process optimization of superalloy powder prepared by the VIGA method.

SELECTION OF CITATIONS
SEARCH DETAIL
...