Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Heliyon ; 10(10): e30868, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803917

ABSTRACT

Licorice is a well-known Chinese medicinal plant that is widely used to treat multiple diseases and process food; however, wild licorice is now facing depletion. Therefore, there is an urgent need to identify and protect licorice germplasm diversity. In this study, metabolomic and transcriptomic analyses were conducted to investigate the biodiversity and potential medicinal value of the rare wild Glycyrrhiza squamulose. A total of 182 differentially accumulated metabolites and 395 differentially expressed genes were identified by comparing Glycyrrhiza uralensis and Glycyrrhiza squamulose. The molecular weights of the chemical component of G. squamulose were comparable with those of G. uralensis, suggesting that G. squamulose may have medicinal value. Differentially accumulated metabolites (DAMs), mainly flavonoids such as kaempferol-3-O-galactoside, kaempferol-3-O-(6"malonyl) glucoside, and hispidulin-7-O-glucoside, showed potential vitality in G. squamulose. Comparative transcriptomics with G. uralensis showed that among the 395 differentially expressed genes (DEGs), 69 were enriched in the isoflavonoid biosynthesis pathway. Multiomics analysis showed that the distinction in flavonoid biosynthesis between G. squamulose and G. uralensis was strongly associated with the expression levels of IF7GT and CYP93C. In addition to identifying similarities and differences between G. squamulose and G. uralensis, this study provides a theoretical basis to protect and investigate rare species such as G. squamulose.

2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 912-923, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621898

ABSTRACT

With the promotion of chemical fertilizer and pesticide reduction and green production of traditional Chinese medicines, microbial fertilizers have become a hot way to achieve the zero-growth of chemical fertilizers and pesticides, improve the yield and qua-lity of medicinal plants, maintain soil health, and promote the sustainable development of the planting industry of Chinese herbal medicines. Soil conditions and microenvironments are crucial to the growth, development, and quality formation of medicinal plants. Microbial fertilizers, as environmentally friendly fertilizers acting on the soil, can improve soil quality by replenishing organic matter and promoting the metabolism of beneficial microorganisms to improve the yield and quality of medicinal plants. In this regard, understanding the mechanism of microbial fertilizer in regulating the quality formation of medicinal plants is crucial for the development of herbal eco-agriculture. This study introduces the processes of microbial fertilizers in improving soil properties, participating in soil nutrient cycling, enhancing the resistance of medicinal plants, and promoting the accumulation of medicinal components to summarize the mechanisms and roles of bacterial fertilizers in regulating the quality formation of medicinal plants. Furthermore, this paper introduces the application of bacterial fertilizers in medicinal plants and makes an outlook on their development, with a view to providing a scientific basis for using microbial fertilizers to improve the quality of Chinese herbal medicines, improve the soil environment, promote the sustainable development of eco-agriculture of traditional Chinese medicine, and popularize the application of microbial fertilizers.


Subject(s)
Pesticides , Plants, Medicinal , Fertilizers , Agriculture , Soil/chemistry , Bacteria/genetics , Plant Extracts , Soil Microbiology
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 130-140, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403346

ABSTRACT

This study induced biological stress in Sorbus pohuashanensis suspension cell(SPSC) with yeast extract(YE) as a bio-tic elicitor and isolated and identified secondary metabolites of triterpenoids produced under stress conditions. Twenty-six triterpenoids, including fifteen ursane-type triterpenoids(1-15), two 18,19-seco-ursane-type triterpenoids(16-17), four lupine-type triterpenoids(18-21), two cycloartane-type triterpenoids(22-23), and three squalene-type triterpenoids(24-26), were isolated and purified from the methanol extract of SPSC by chromatography on silica gel, MCI, Sephadex LH-20, and MPLC. Their structures were elucidated by spectroscopic analyses. All triterpenoids were isolated from SPSC for the first time and 22-O-acetyltripterygic acid A(1) was identified as a new compound. Selected compounds were evaluated for antifungal, antitumor, and anti-inflammatory activities, and compound 1 showed an inhibitory effect on NO production in LPS-induced RAW264.7 cells.


Subject(s)
Pentacyclic Triterpenes , Sorbus , Triterpenes , Animals , Mice , Sorbus/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , RAW 264.7 Cells , Molecular Structure
4.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230827

ABSTRACT

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Subject(s)
Atractylodes , Gastrointestinal Microbiome , Mice , Animals , Spleen , Atractylodes/chemistry , Rhizome/chemistry , Polysaccharides , Diarrhea/drug therapy
5.
Phytochem Anal ; 35(1): 135-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37743673

ABSTRACT

INTRODUCTION: Agarwood, a fragrant resinous wood mainly formed by Aquilaria spp., is used worldwide as a natural fragrance and traditional medicine. A large amount of Aquilaria sinensis (Lour.) Gilg leaves are underutilised during the process of the agarwood industry, and the development of A. sinensis leaves as tea has recently attracted more and more attention. However, the small molecule profile of A. sinensis leaves and their bioactivities has been rarely reported. OBJECTIVE: To conduct a rapid untargeted liquid chromatography-mass spectrometry (LC-MS) analysis of A. sinensis leaves with a molecular networking (MN) strategy and evaluate its antioxidant and antidiabetic value. METHOD: A MN-assisted tandem mass spectrometry (MS/MS) analysis strategy was used to investigate the small molecule profile of A. sinensis leaves. Additionally, the integration of antioxidant and α-glucosidase inhibitory assays with MN analysis was executed to expeditiously characterise the bioactive compounds for potential prospective application. RESULTS: Five main chemical groups including phenol C-glycosides, organic acids, 2-(2-phenylethyl) chromones, benzophenone O-glycosides and flavonoids were rapidly revealed from the A. sinensis leaves. Eighty-one compounds were provisionally identified by comparing their MS/MS fragments with canonical pathways. The featured xanthone C-glycosides and benzophenone C-glycosides were recognised as the primary components of A. sinensis leaves. Several dimers and a trimer of mangiferin were reported firstly in A. sinensis leaves. Furthermore, 17 and 14 potential bioactive molecules were rapidly annotated from antioxidant and α-glucosidase inhibitory fraction, respectively. CONCLUSION: Our findings will help expand the utilisation of A. sinensis leaves and thus promote the high-quality development of agarwood industry.


Subject(s)
Tandem Mass Spectrometry , Thymelaeaceae , Antioxidants/pharmacology , alpha-Glucosidases , Flavonoids/chemistry , Glycosides , Thymelaeaceae/chemistry , Benzophenones
6.
Talanta ; 269: 125461, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056416

ABSTRACT

Gastrodia elata Bl. is a widely used traditional Chinese medicine known for its medicinal properties. However, during the drying process, G. elata is often fumigated with sulfur to prevent corrosion and improve its appearance. Sulfur-fumigation can result in a reduction in the effective components of the herb and can also be hazardous to human health due to the remaining sulfur dioxide. Sulfur-fumigation of G. elata poses a significant challenge to both end-users and researchers. The detection of p-hydroxybenzyl hydrogen sulfite (p-HS) is a useful tool in determining whether G. elata has been fumigated with sulfur. Unfortunately, the current method for detecting p-HS is costly and requires sophisticated instruments. Therefore, there is a need to develop a more cost-effective and user-friendly method for the detection of p-HS. This study utilized the Capture-SELEX technique to screen high-affinity aptamers for p-HS, which were subsequently characterized by isothermal titration calorimetry (ITC). An aptamer sequence (seq 6) with a high affinity of Kd = 26.5 µM was obtained following 8 rounds of selection against p-HS. With the aptamer serving as the recognition element and gold nanoparticles as the colorimetric indicator, a simple and efficient colorimetric sensor was developed for the specific detection of p-HS. This detection method exhibited a limit of detection of 1 µg/ml, while the p-HS recoveries demonstrated a range of between 88.5 % and 105 % for samples of G. elata obtained in the market. In summary, the aptamer exhibited a high affinity for p-HS, and the sensor developed through the use of a colloidal gold detector based on nucleic acid aptamer can be utilized for rapid detection of sulfur-fumigated G. elata. With these findings, this research paper provides valuable scientific insights and highlights significant potential for future studies in this area.


Subject(s)
Drugs, Chinese Herbal , Gastrodia , Metal Nanoparticles , Humans , Gastrodia/chemistry , Drugs, Chinese Herbal/chemistry , Gold , Sulfur/chemistry
7.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114208

ABSTRACT

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Phylogeny , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Phenotype
8.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802795

ABSTRACT

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Subject(s)
Equipment Reuse , Medicine, Chinese Traditional , Goals , Environmental Pollution , Economic Development , Carbon , China
9.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4942-4949, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802835

ABSTRACT

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Subject(s)
Trichoderma , Agriculture , Farms , Plant Diseases/prevention & control , Plant Diseases/microbiology , Rhizome
10.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4967-4973, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802838

ABSTRACT

A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.


Subject(s)
Carthamus tinctorius , Seeds , Peroxidase/metabolism , Plant Leaves/metabolism , Antioxidants
11.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2925-2930, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37381952

ABSTRACT

Based on the data of 56 kinds of diseases and drug use in 100 kinds of cultivated Chinese herbal medicines, this paper used frequency analysis method to count the types of diseases and their drug use characteristics, and systematically analyzed the status of drug registration and monitoring standards for disease prevention and control of Chinese herbal medicines. The results showed that 14 diseases such as root rot, powdery mildew, and drooping disease were common in the production of Chinese herbal medicines. Among the 99 pesticides reported, 67.68% were chemically synthesized, 23.23% were biological pesticides, and 9.09% were mineral pesticides. Among the reported pesticides, 92.93% of them were low toxic, with relative safety. However, 70% of the production drugs were not registered in Chinese herbal medicines, and the phenomenon of overdose was serious. The current pesticide residue monitoring standards does not match well with production drugs in China. Although the matching degree between Maximum Residue Limit of Pesticide in Food Safety National Standard(GB 2763-2021) and production drugs is more than 50%, there are few varieties of Chinese herbal medicines covered. The matching degree between Chinese Pharmacopoeia(2020 edition), Green Industry Standard of Medicinal Plants and Preparations(WM/T2-2004), and production drugs is only 1.28%. It is suggested to speed up the research and registration of Chinese herbal medicine production and further improve the pesticide residue limit standard combined with the actual production, so as to promote the high-quality development of Chinese herbal medicine industry.


Subject(s)
Drugs, Chinese Herbal , Pesticide Residues , Pesticides , Humans , Biological Control Agents
12.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37381971

ABSTRACT

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Subject(s)
Plants, Medicinal , Agriculture , Biotechnology , Plant Breeding , Plants, Medicinal/genetics
13.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3281-3286, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37382012

ABSTRACT

Pseudostellaria heterophylla in large-scale cultivation needs to apply pesticides to control diseases, and non-standard use of pesticide may cause excessive pesticide residues in medicinal materials, increasing the risk of clinical medication. To accurately monitor the residual pesticides, this paper investigated the drug use during the process of P. heterophylla disease prevention in 25 P. he-terophylla planting enterprises or individual households in Guizhou province. It was found that there were 8 common diseases in P. he-terophylla planting, including leaf spot, downy mildew, virus disease, root rot, dropping disease, purple feather disease, white silk disease, and damping-off disease. Twenty-three kinds of pesticides were used in disease control, mainly chemical synthetic pesticides, accounting for 78.3%, followed by biological pesticides and mineral pesticides, accounting for 13.0% and 8.7%, respectively. The disease prevention and control drugs were all low-toxic pesticides, and there were no varieties banned in the Chinese Pharmacopoeia(2020 edition). However, the pesticides used have not been registered on P. heterophylla, and the excessive use of drugs was serious. The present monitoring of pesticide residues in P. heterophylla is mainly based on traditional pesticides such as organochlorine, organophosphorus, and carbamate, which does not effectively cover the production of drugs and had certain safety risks. It is suggested to speed up the research and registration of drug use in the production of P. heterophylla, increase the use of biological pesticides, and further improve the monitoring indicators of pesticide residues in combination with the actual production of drugs, so as to promote the high-quality development of P. heterophylla industry.


Subject(s)
Caryophyllaceae , Pesticide Residues , Pesticides , Plants, Medicinal , Biological Control Agents
14.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005802

ABSTRACT

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Subject(s)
Plants, Medicinal , Sustainable Development , Plants, Medicinal/genetics , Plant Breeding , Medicine, Chinese Traditional , Technology
15.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1203-1211, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005804

ABSTRACT

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Subject(s)
Panax notoginseng , Panax , Saponins , Panax notoginseng/chemistry , Antioxidants/pharmacology , Saponins/pharmacology , Glutathione , Risk Assessment
16.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1491-1497, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005836

ABSTRACT

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 µg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Subject(s)
Coix , Mycotoxins , Humans , Mycotoxins/analysis , Aflatoxin B1/analysis , Chromatography, Liquid/methods , Food Contamination/analysis , Tandem Mass Spectrometry/methods
17.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1483-1490, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005835

ABSTRACT

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Subject(s)
Cadmium , Panax notoginseng , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Brassinosteroids/pharmacology , Chlorophyll/metabolism , Plant Roots/metabolism , Stress, Physiological
18.
Zhongguo Zhong Yao Za Zhi ; 48(3): 608-613, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872223

ABSTRACT

This paper introduced the overview of the "eight trends" of Chinese medicinal materials(CMM) industry in 2021, analyzed the problems of CMM production, and put forward development suggestions. Specifically, "eight trends" could be summarized as follows.(1) The growing area of CMM tended to be stable, and some provinces began to release the local catalog of Dao-di herbs.(2) The protection process of new varieties accelerated, and a number of excellent varieties were bred.(3) The theory of ecological cultivation was further enriched, and the demonstration effect of ecological cultivation technology was prominent.(4) Some CMM realized complete mechanization and formed typical model cases.(5) The number of cultivation bases using the traceability platform increased, and provincial internet trading platforms were set up.(6) The construction of CMM industrial clusters accelerated, and the number of provincial-level regional brands increased rapidly.(7) Many new agricultural business entities were founded nationwide, and a variety of methods were used to drive the intensified development of CMM.(8) A number of local TCM laws were promulgated, and the management regulation of food and medicine homology substances catalogs was issued. On this basis, four suggestions for CMM production were proposed.(1) It is suggested to speed up the formulation of the national catalog of Dao-di herbs and carry out the certification of Dao-di herbs production bases.(2) Ecological planting of forest and grassland medicine should be further strengthened in terms of technical research and promotion based on the principle of ecological priority.(3) The basic work of disaster prevention should be paid more attention and technical measures for disaster mitigation should be developed.(4) The planted area of commonly used CMM should be incorporated into the national regular statistical system.


Subject(s)
Commerce , Industry , Agriculture , Certification , China
19.
Zhongguo Zhong Yao Za Zhi ; 48(3): 660-671, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872229

ABSTRACT

Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.


Subject(s)
Fumigation , Tandem Mass Spectrometry , Humans , Animals , Rats , Chromatography, High Pressure Liquid , Epithelial Cells , Sulfur
20.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5397-5405, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36471953

ABSTRACT

Medicinal plants are the main source of clinical medication in traditional Chinese medicine(TCM). China has achieved large-scale cultivation and production of medicinal plants. As an important resource for the sustainable development of agriculture in the future, microorganisms can also promote the green, ecological and high-quality development of Chinese medicine agriculture. However, research on the medicinal plant microbiome is still limited. Therefore, based on the development timeline of microbiome research, the present study reviewed the origin, technology, and hotspots of microbiome research and proposed some suggestions for future research according to the advances in medicinal plant microbiome.(1)Systematic investigation of medicinal plant microbiome on the species, genus, and family levels should be carried out on the medicinal plants of different chemotypes in order to reveal the coevolution of the microorganisms and their host plants.(2)Spatial and temporal research on medicinal plant microbiome should be performed to reveal the effects of microorganisms on the growth, development, and secondary metabolite accumulation of medicinal plants, as well as the underlying mechanisms.(3)Model medicinal plant species should be selected and microorganism-plant interaction research models should be established.(4)Core microbiome of medicinal plants should be explored for the future application of crucial microbes in the sustaina-ble agriculture of Chinese medicine.(5)Breeding of medicinal plant-associated microbes should be carried out to lay the foundation for novel medicinal plant breeding strategies.(6)High-throughput sequencing, traditional incubation, and isolation of microbes should be combined to study medicinal plant microbiome, thereby promoting the exploitation and application of uncultured microbial strains.(7)Platforms for the preservation of medicinal plant-associated microbe strains and data of their metabolites should be established and the exchange of information and cooperation between these platforms should be subsequently enhanced. With these suggestions, the efficient and rapid development of medicinal plant microbiome research is expected to be promoted.


Subject(s)
Microbiota , Plants, Medicinal , Plant Breeding , Medicine, Chinese Traditional , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...