Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(1): e202316259, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37988261

ABSTRACT

Macrocycles with bent π-conjugation motif are extremely rare in nature and synthetically daunting and anticancer haouamines and spirohexenolides were representative of such rare natural products with synthetically challenging bent π-conjugation within a macrocycle. While the total synthesis of haouamines has been elegantly achieved, spirohexenolides remains an unmet synthetic challenge due to the highly strained bent 1,3,5-triene conjugation within C15 macrocycle. Inspired by the chemical synthesis of cycloparaphenylenes (CPPs) and haouamines, herein we devise a synthetic strategy to overcome the highly strained bent 1,3,5-triene conjugation within the macrocycle and achieve the first, asymmetric total synthesis of spirohexenolides A (>20 mg) and B (>50 mg). Our synthesis features strategic design of ring-closing metathesis (RCM) macrocyclization followed by double dehydration to achieve the C15 macrocycle with the deformed nonplanar 1,3,5-triene conjugation. In addition, we have developed a new enantioselective construction of highly functionalized spirotetronate fragment (northeast moiety) through RCM and Ireland-Claisen rearrangement. Our in vitro bioassay studies reveal that both spirohexenolides are cytotoxic against a panel of human cancer cells with IC50 1.2-13.3 µM and spirohexenolide A is consistently more potent (up to 3 times) than spirohexenolide B, suggesting the importance of alcohol for their bioactivity and for medicinal chemistry development.

2.
Org Lett ; 24(40): 7416-7420, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36191161

ABSTRACT

Here, we report the first total syntheses of daphnezomine L-type alkaloids daphnezomine L methyl ester and calyciphylline K via late-stage C-N bond activation. The first synthesis of secodaphniphylline-type alkaloid caldaphnidine D was also achieved via a similar strategy. Other key transformations employed in our synthesis were a facile vicinal diol olefination and an efficient radical cyclization cascade. Biological studies indicated two synthetic compounds possess promising neuroprotective activity.


Subject(s)
Alkaloids , Daphniphyllum , Alkaloids/chemistry , Cyclization , Daphniphyllum/chemistry , Esters , Molecular Structure , Stereoisomerism
3.
Acc Chem Res ; 55(16): 2326-2340, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35916456

ABSTRACT

The six-membered heterocycles containing oxygen and nitrogen (tetrahydropyrans, pyrans, piperidines) are among the most common heterocyclic structures ubiquitously present in bioactive molecules such as carbohydrates, small-molecule drugs, and natural products. Chemical synthesis of fully functionalized pyrans and piperidines is a research theme of practical importance and scientific significance and, thus, has attracted continuous interest from synthetic chemists. Among the numerous synthetic approaches, Achmatowicz rearrangement (AchR) represents a general and unique strategy that uses biomass-derived furfuryl alcohols as the renewable starting material to obtain fully functionalized six-membered oxygen/nitrogen heterocycles, which provides golden opportunities for organic chemists to address various synthetic challenges.This Account summarizes our 10 years of work on exploiting AchR to address some challenges in organic synthesis ranging from green chemistry and organic methodology to the total synthesis of natural products. We enabled the sustainable and safe use of AchR in a small (academia) or large (industrial) scale by developing two generations of green approaches for AchR (oxone-halide and Fenton-halide), which largely eliminate the use of the most popular, but more toxic and expansive, NBS and m-CPBA. This triggered our intensive interest in developing new green chemistry for important organic reactions, in particular, halogenation/oxidation reactions involving reactive halogenating species with the aim of eliminating the use of commonly used toxic halogen agents such as elemental bromine, chlorine gas, and various N-haloamide reagents (NBS, NCS, and NIS). We successfully employed oxone-halide and Fenton-halide as green alternatives to several mechanistically related organic reactions including arene/alkene halogenation, oxidation or oxidative rearrangement of indoles, oxidation of alcohols/thioacetals, and oxidative halogenation of aldoximes for the in situ generation of nitrile oxide. These green reactions are expected to have a solid impact on the future of organic synthesis in academia and industries.We expanded the synthetic utility of AchR by exploring several new transformations of AchR products and developed a cascade reductive ring expansion, reductive deoxygenation/Heck-Matsuda arylation, palladium-catalyzed C-arylation, and regiodivergent [3 + 2] cycloaddition with 1,3-dicarbonyls. These methodologies offer a new avenue to fully functionalized six-membered heterocycles.The synthetic utility of AchR was demonstrated in our total synthesis of 28 natural products with a pyran/piperidine moiety. The AchR-based strategy endows the total synthesis with scalability, sustainability, and flexibility. The green and scalable approaches developed in our lab for AchR allow us to easily obtain decagrams of synthetically valuable pyrans and/or piperidines with low risk and low cost from biomass-derived furfuryl alcohol/aldehyde.


Subject(s)
Biological Products , Chemistry, Organic , Nitrogen , Oxygen , Piperidines , Pyrans
4.
Angew Chem Int Ed Engl ; 61(3): e202115384, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34784090

ABSTRACT

Paspaline-derived indole diterpenes (IDTs) are structurally complex mycotoxins with unique tremorgenic activity. Reported are asymmetric total syntheses of three paspaline-derived IDTs paspalicine, paspalinine and paspalinine-13-ene. Our synthesis features a green Achmatowicz rearrangement/bicycloketalization for the efficient construction of FG rings (75 % yield) and a cascade ring-closing metathesis of dienyne for highly regioselective formation of CD rings (72 % yield). Other highlights include four palladium-mediated reactions (Stille, aza-Wacker, Suzuki, and Heck) to forge the BE rings and the installation of two continuous all-carbon quaternary stereocenters via reductive ring-opening of cyclopropane and α-methylation of the conjugate ester. Our new synthetic strategy is expected to be applicable to the chemical synthesis of other paspaline-derived IDTs and will facilitate the bioactivity studies of these agriculturally and pharmacologically important IDTs.

5.
Acc Chem Res ; 53(11): 2726-2737, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33074659

ABSTRACT

Native to the Asia-Pacific region and widely applied in traditional Chinese medicine, the genus Daphniphyllum has produced over 330 known Daphniphyllum alkaloids. Investigations into these alkaloids have shown an exceptional range of interesting bioactivities. Challenging and caged polycyclic architectures and the promising biological profiles make Daphniphyllum alkaloids intriguing synthetic targets. Based on their backbones, these alkaloids can be categorized into 13-35 structurally distinct subfamilies. In addition to our work, almost 30 impressive total syntheses of Daphniphyllum alkaloids from seven subfamilies, namely, daphniphylline-type, secodaphniphylline-type, daphnilactone A-type, bukittinggine-type, daphmanidin A-type, calyciphylline A-type, and calyciphylline B-type alkaloids, have been reported by 11 research groups. However, many Daphniphyllum alkaloid subfamilies remain inaccessible by chemical synthesis.In this Account, we summarize our recent endeavors in the total synthesis of Daphniphyllum alkaloids commencing from simple chiral bicyclic synthons. Daphniphyllum alkaloids with diversified skeletons from four different subfamilies, namely, calyciphylline A-type, daphnezomine A-type, bukittinggine-type, and yuzurimine-type alkaloids, have been achieved. Furthermore, the tricyclic core structure of daphniglaucin C-type alkaloids daphnimacropodines was also synthesized. First, we describe a 14-step synthesis of calyciphylline A-type alkaloid (-)-himalensine A, which features a mild Cu-mediated nitrile hydration, an intramolecular Heck reaction to assemble the pivotal 2-azabicyclo[3.3.1]nonane moiety, and a Meinwald rearrangement to introduce the critical oxidative state into the skeleton. We then introduce the synthesis of daphnezomine A-type alkaloid dapholdhamine B, which possesses a unique aza-adamantane core. This target molecule was fabricated using key reactions including Huang's amide-activation-annulation. An unexpected radical detosylation during the synthesis of dapholdhamine B further inspired an ambitious radical cyclization cascade strategy, which eventually led to an efficient total synthesis of bukittinggine-type alkaloid (-)-caldaphnidine O. This highly chemo-, regio-, and stereoselective radical reaction cascade also shed light on the synthetic strategy of other alkaloids with caged structures. We next describe the first total synthesis of yuzurimine-type alkaloid (+)-caldaphnidine J. The key steps in our approach include a Pd-catalyzed regioselective hydroformylation and a novel Swern oxidation/ketene dithioacetal Prins reaction cascade. The work has achieved the first synthesis of a member of the largest subfamily of Daphniphyllum alkaloids. Finally, we show our efforts toward the total synthesis of daphniglaucin C-type alkaloids. Overall, we hope that the interesting strategies and synthetic methods demonstrated in our efforts could inspire a wide variety of additional applications to natural product synthesis.


Subject(s)
Alkaloids/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Daphniphyllum/chemistry , Alkaloids/chemistry , Cyclization , Daphniphyllum/metabolism , Ketones/chemistry , Stereoisomerism
6.
Nat Commun ; 11(1): 3538, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669587

ABSTRACT

Ever since Hirata's report of yuzurimine in 1966, nearly fifty yuzurimine-type alkaloids have been isolated, which formed the largest subfamily of the Daphniphyllum alkaloids. Despite extensive synthetic studies towards this synthetically challenging and biologically intriguing family, no total synthesis of any yuzurimine-type alkaloids has been achieved to date. Here, the first enantioselective total synthesis of (+)-caldaphnidine J, a highly complex yuzurimine-type Daphniphyllum alkaloid, is described. Key transformations of this approach include a highly regioselective Pd-catalyzed hydroformylation, a samarium(II)-mediated pinacol coupling, and a one-pot Swern oxidation/ketene dithioacetal Prins reaction. Our approach paves the way for the synthesis of other yuzurimine-type alkaloids and related natural products.


Subject(s)
Alkaloids/chemical synthesis , Daphniphyllum/chemistry , Biological Products , Catalysis , Drug Design , Ethylenes/chemistry , Ketones/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Structure , Oxidation-Reduction , Oxygen/chemistry , Samarium/chemistry , Stereoisomerism
7.
J Am Chem Soc ; 141(33): 13043-13048, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31381311

ABSTRACT

The synthetically challenging, diverse chemical skeletons and promising biological profiles of the Daphniphyllum alkaloids have generated intense interest from the synthetic chemistry community. Herein, the first and enantioselective total synthesis of (-)-caldaphnidine O, a complex bukittinggine-type Daphniphyllum alkaloid, is described. The key transformations in this concise approach included an intramolecular aza-Michael addition, a ring expansion reaction sequence, a Sm(II)/Fe(III)-mediated Kagan-Molander coupling, and the rapid formation of the entire hexacyclic ring skeleton of the target molecule via a radical cyclization cascade reaction, which was inspired by an unexpected radical detosylation observed in our recent dapholdhamine B synthesis.

8.
J Am Chem Soc ; 141(29): 11713-11720, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31299155

ABSTRACT

The intriguing structural complexity and bioactivities of the Daphniphyllum alkaloids have long attracted much attention. Herein, we report the first and enantioselective total synthesis of Daphniphyllum alkaloid dapholdhamine B and its lactone derivative. The chemical structure of dapholdhamine B contains a unique aza-adamantane core skeleton and eight contiguous stereocenters, including three contiguous fully substituted stereocenters, which present a formidable synthetic challenge. This concise approach used to achieve the first synthesis of an aza-adamantane natural product features a vinylogous Mannich reaction, an optimized α-bromo-α,ß-unsaturated ketone synthesis, a substrate-dependent intramolecular aza-Michael addition, a key annulation via amide activation, an SN2'-type lactonization, and a facile Horner-Wadsworth-Emmons reaction that converts the hemiacetal moiety to the corresponding homologated carboxylic acid.


Subject(s)
Alkaloids/chemical synthesis , Adamantane/chemistry , Alkaloids/chemistry , Biological Products/chemical synthesis , Lactones/chemistry , Molecular Structure , Stereoisomerism
9.
Org Lett ; 21(11): 4309-4312, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31141376

ABSTRACT

Daphniphyllum alkaloids daphnimacropodines A-C possess a highly congested ring system and share a common tetracyclic ring skeleton. To access the challenging chemical structure of daphnimacropodines, a divergent synthetic approach toward their total synthesis is described. A stereoselective synthesis of the core structure of daphnimacropodines has been achieved from a simple diketone building block. Our approach features an intramolecular carbamate aza-Michael addition and a hydropyrrole synthesis via a Au-catalyzed alkyne hydration followed by an aldol condensation, whereas all the other attempts failed.

10.
Angew Chem Int Ed Engl ; 58(22): 7390-7394, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30958916

ABSTRACT

The daphniphyllum alkaloids are a structurally fascinating and remarkably diverse family of natural products. General strategies for the chemical synthesis of their challenging architectures are highly desirable for efficiently accessing these intriguing alkaloids and addressing their pharmaceutical potential. Herein, a concise strategy designed to provide general and diversifiable access to various daphniphyllum alkaloids is described and utilized in the asymmetric synthesis of (-)-himalensine A, which was accomplished in 14 steps. Key features of this strategy include a Cu-catalyzed nitrile hydration, a Heck reaction to construct the challenging 2-azabicyclo[3.3.1]nonane motif, a Meinwald rearrangement reaction, six, pot-economic reactions, and the minimal use of protecting groups, which significantly improved the overall synthetic efficiency.


Subject(s)
Alkaloids/chemical synthesis , Biological Products/chemical synthesis , Catalysis , Molecular Structure , Stereoisomerism
11.
Angew Chem Int Ed Engl ; 55(12): 4064-8, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26890255

ABSTRACT

The first total synthesis of the alkaloid (-)-haliclonin A is reported. The asymmetric synthesis relied on a novel organocatalytic asymmetric conjugate addition of nitromethane with 3-alkenyl cyclohex-2-enone to set the stereochemistry of the all-carbon quaternary stereogenic center. The synthesis also features a Pd-promoted cyclization to form the 3-azabicyclo[3,3,1]nonane core, a SmI2 -mediated intermolecular reductive coupling of enone with aldehyde to form the requisite secondary chiral alcohol, ring-closing alkene and alkyne metathesis reactions to build the two aza-macrocyclic ring systems, and an unprecedented direct transformation of enol into enone.


Subject(s)
Diamines/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Catalysis
12.
Chemistry ; 19(1): 87-91, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23225701

ABSTRACT

Three keys to success: A concise method for the construction of a tricyclic substructure (2) of haliclonin A (1) in racemic form is described (see figure). This synthesis features a new Pd-mediated chemoselective carbonyl-enone coupling reaction, an organocatalytic reaction, and a ring-closing metathesis reaction for the construction of the macrocyclic ring as key steps.


Subject(s)
Diamines/chemistry , Diamines/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Cyclization , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...