Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38536076

ABSTRACT

Three yeast strains belonging to the ascomycetous yeast genus Pichia were isolated from two soil samples from Yunnan and Guizhou provinces and a marine water sample from Liaoning province, PR China. Phylogenetic analyses based on the sequences of the D1/D2 domains of the large subunit(LSU) rRNA gene and the internal transcribed spacer (ITS) region indicate that these three strains, together with 12 additional strains isolated from various substrates collected in different regions or countries of the world, represent a novel species of the genus Pichia, for which the name Pichia kurtzmaniana sp. nov. (holotype: strain CGMCC 2.7213) is proposed. The novel species differs from its close relatives Candida californica by eight (1.5 %) and 26 (11.1 %) mismatches in the D1/D2 domains and the ITS region, respectively; and from Pichia chibodasensis by 11 (2.1 %) and 20 (8.7 %) mismatches in the D1/D2 domains and the ITS region, respectively. In addition, eight Candida species which belong to the Pichia clade are transferred to the genus Pichia, resulting in the proposal of the following new combinations: Pichia cabralensis comb. nov., Pichia californica comb. nov., Pichia ethanolica comb. nov., Pichia inconspicua comb. nov., Pichia phayaonensis comb. nov., Pichia pseudolambica comb. nov., Pichia rugopelliculosa comb. nov., and Pichia thaimueangensis comb. nov.


Subject(s)
Candida , Pichia , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Article in English | MEDLINE | ID: mdl-38415711

ABSTRACT

A yeast strain (CGMCC 2.6937T) belonging to the ascomycetous yeast genus Saturnispora was recently isolated from soil collected in Xinghuacun, Shanxi Province, PR China. The strain produces one or two ellipsoid or spherical ascospores in asci formed by the conjugation between a cell and its bud. Phylogenetic analyses of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene suggest that this strain is conspecific with strains NYNU 14639 isolated from rotten wood collected in Funiu Mountain, Henan province and ES13S05 from soil collected in Nantou County, Taiwan. The CGMCC 2.6937T group is most closely related to Saturnispora dispora and Saturnispora zaruensis. However, strain CGMCC 2.6937T differs from S. dispora by 17 (3.2 %, 13 substitutions and four gaps) and 77 (18.8 %, 52 substitutions and 25 gaps) mismatches, and from S. zaruensis by 15 (2.9 %, 12 substitutions and three gaps) and 64 (15.6 %, 44 substitutions and 20 gaps) mismatches, in the D1/D2 domain and ITS region, respectively. The results suggest that the CGMCC 2.6937T group represents an undescribed species in the genus Saturnispora, for which the name Saturnispora sinensis sp. nov. is proposed. The holotype strain is CGMCC 2.6937T.


Subject(s)
Ascomycota , Phylogeny , Soil Microbiology , Wood , Ascomycota/classification , Ascomycota/genetics , Base Composition , Sequence Analysis, DNA , Wood/microbiology , Mycological Typing Techniques
3.
Cell Rep Med ; 4(12): 101308, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38086378

ABSTRACT

De novo mutations in STXBP1 are among the most prevalent causes of neurodevelopmental disorders and lead to haploinsufficiency, cortical hyperexcitability, epilepsy, and other symptoms in people with mutations. Given that Munc18-1, the protein encoded by STXBP1, is essential for excitatory and inhibitory synaptic transmission, it is currently not understood why mutations cause hyperexcitability. We find that overall inhibition in canonical feedforward microcircuits is defective in a P15-22 mouse model for Stxbp1 haploinsufficiency. Unexpectedly, we find that inhibitory synapses formed by parvalbumin-positive interneurons were largely unaffected. Instead, excitatory synapses fail to recruit inhibitory interneurons. Modeling confirms that defects in the recruitment of inhibitory neurons cause hyperexcitation. CX516, an ampakine that enhances excitatory synapses, restores interneuron recruitment and prevents hyperexcitability. These findings establish deficits in excitatory synapses in microcircuits as a key underlying mechanism for cortical hyperexcitability in a mouse model of Stxbp1 disorder and identify compounds enhancing excitation as a direction for therapy.


Subject(s)
Brain Diseases , Animals , Humans , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Mutation , Neurons/metabolism , Synapses/metabolism , Synaptic Transmission/genetics
4.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37847534

ABSTRACT

Three strains belonging to the basidiomycetous yeast genus Vishniacozyma were isolated from marine water samples collected from intertidal zones in Liaoning province, northeast China. Phylogenetic analyses based on the sequences of the small subunit (SSU) ribosomal DNA (rDNA), the D1/D2 domain of the large subunit (LSU) ribosomal DNA (rDNA), the internal transcribed spacer region (ITS), the two subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1), and the mitochondrial gene cytochrome b (CYTB) showed that these strains together with 20 strains from various geographic and ecological origins from other regions of the world represent a novel species in the genus Vishniacozyma. We propose the name Vishniacozyma pseudocarnescens sp. nov. (holotype CGMCC 2.6457) for the new species, which differs phenotypically from its close relatives V. carnescens, V. tephrensis, and V. victoriae by its ability to grow at 30 °C and on 50 % (w/v) glucose-yeast extract agar.


Subject(s)
Basidiomycota , Fatty Acids , Phylogeny , DNA, Ribosomal Spacer/genetics , Mycological Typing Techniques , DNA, Fungal/genetics , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Fatty Acids/chemistry , DNA, Ribosomal
SELECTION OF CITATIONS
SEARCH DETAIL
...