Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insights Imaging ; 15(1): 127, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816553

ABSTRACT

OBJECTIVES: To compare the diagnostic performance of intratumoral and peritumoral features from different contrast phases of breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building radiomics models for differentiating molecular subtypes of breast cancer. METHODS: This retrospective study included 377 patients with pathologically confirmed breast cancer. Patients were divided into training set (n = 202), validation set (n = 87) and test set (n = 88). The intratumoral volume of interest (VOI) and peritumoral VOI were delineated on primary breast cancers at three different DCE-MRI contrast phases: early, peak, and delayed. Radiomics features were extracted from each phase. After feature standardization, the training set was filtered by variance analysis, correlation analysis, and least absolute shrinkage and selection (LASSO). Using the extracted features, a logistic regression model based on each tumor subtype (Luminal A, Luminal B, HER2-enriched, triple-negative) was established. Ten models based on intratumoral or/plus peritumoral features from three different phases were developed for each differentiation. RESULTS: Radiomics features extracted from delayed phase DCE-MRI demonstrated dominant diagnostic performance over features from other phases. However, the differences were not statistically significant. In the full fusion model for differentiating different molecular subtypes, the most frequently screened features were those from the delayed phase. According to the Shapley additive explanation (SHAP) method, the most important features were also identified from the delayed phase. CONCLUSIONS: The intratumoral and peritumoral radiomics features from the delayed phase of DCE-MRI can provide additional information for preoperative molecular typing. The delayed phase of DCE-MRI cannot be ignored. CRITICAL RELEVANCE STATEMENT: Radiomics features extracted and radiomics models constructed from the delayed phase of DCE-MRI played a crucial role in molecular subtype classification, although no significant difference was observed in the test cohort. KEY POINTS: The molecular subtype of breast cancer provides a basis for setting treatment strategy and prognosis. The delayed-phase radiomics model outperformed that of early-/peak-phases, but no differently than other phases or combinations. Both intra- and peritumoral radiomics features offer valuable insights for molecular typing.

2.
J Magn Reson Imaging ; 58(5): 1603-1614, 2023 11.
Article in English | MEDLINE | ID: mdl-36763035

ABSTRACT

BACKGROUND: Multiparametric MRI radiomics could distinguish human epidermal growth factor receptor 2 (HER2)-positive from HER2-negative breast cancers. However, its value for further distinguishing HER2-low from HER2-negative breast cancers has not been investigated. PURPOSE: To investigate whether multiparametric MRI-based radiomics can distinguish HER2-positive from HER2-negative breast cancers (task 1) and HER2-low from HER2-negative breast cancers (task 2). STUDY TYPE: Retrospective. POPULATION: Task 1: 310 operable breast cancer patients from center 1 (97 HER2-positive and 213 HER2-negative); task 2: 213 HER2-negative patients (108 HER2-low and 105 HER2-zero); 59 patients from center 2 (16 HER2-positive, 27 HER2-low and 16 HER2-zero) for external validation. FIELD STRENGTH/SEQUENCE: A 3.0 T/T1-weighted contrast-enhanced imaging (T1CE), diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC). ASSESSMENT: Patients in center 1 were assigned to a training and internal validation cohort at a 2:1 ratio. Intratumoral and peritumoral features were extracted from T1CE and ADC. After dimensionality reduction, the radiomics signatures (RS) of two tasks were developed using features from T1CE (RS-T1CE), ADC (RS-ADC) alone and T1CE + ADC combination (RS-Com). STATISTICAL TESTS: Mann-Whitney U tests, the least absolute shrinkage and selection operator, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS: For task 1, RS-ADC yielded higher area under the ROC curve (AUC) in the training, internal, and external validation of 0.767/0.725/0.746 than RS-T1CE (AUC = 0.733/0.674/0.641). For task 2, RS-T1CE yielded higher AUC of 0.765/0.755/0.678 than RS-ADC (AUC = 0.706/0.608/0.630). For both of task 1 and task 2, RS-Com achieved the best performance with AUC of 0.793/0.778/0.760 and 0.820/0.776/0.711, respectively, and obtained higher clinical benefit in DCA compared with RS-T1CE and RS-ADC. The calibration curves of all RS demonstrated a good fitness. DATA CONCLUSION: Multiparametric MRI radiomics could noninvasively and robustly distinguish HER2-positive from HER2-negative breast cancers and further distinguish HER2-low from HER2-negative breast cancers. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/metabolism , Retrospective Studies , Magnetic Resonance Imaging , Receptor, ErbB-2
3.
Cancers (Basel) ; 14(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35884576

ABSTRACT

OBJECTIVE: To investigate the value of delta-radiomics after the first cycle of neoadjuvant chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of pathological complete response (pCR) in patients with breast cancer. METHODS: From September 2018 to May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed with breast cancer who received NAC before surgery, were prospectively enrolled. All patients underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a logistic regression model were used to select features and build models. The model performance was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test. RESULTS: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC (0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617, p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitudinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI: 0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after one cycle of NAC in patients with breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...