Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 227: 365-372, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36535358

ABSTRACT

In this study, we propose a simple route for the fabrication of bio-based composite films from cellulose nanofibres (CNF) and lignin. First, CNFs were periodate oxidised to obtain dialdehyde cellulose nanofibres (DACNF). Subsequently, lignin nanoparticles (LNPs) with diameters between 50 and 150 nm were prepared using kraft lignin and mixed with DACNF to fabricate DACNF-LNP nanocomposite films via a condensation reaction. The addition of LNPs rendered the films with high ultraviolet-shielding and antioxidant properties. The water contact angle increased for the composite films compared with that of pure CNF film, while the water vapor transmission rate (WVTR) decreased. The mechanical properties of the nanocomposite films were significantly improved by the addition of LNPs. The dry tensile stress of DACNF-LNPs5 with 5 % LNPs significantly increased from 47 to 164 MPa. It was also higher than that of CNF-LNPs5 (105 MPa), in which CNFs were not periodate oxidised. After immersion in water for 1 h, the wet tensile strength of DACNF-LNPs5 was 31 MPa, 3 times higher than that of CNF-LNPs5 (7 MPa). These results indicate that the water-resistant properties of the composite films were significantly enhanced. The films prepared from green and renewable bioresources exhibited potential applications in food packaging and biomedical materials.


Subject(s)
Nanofibers , Nanoparticles , Lignin , Antioxidants/pharmacology , Cellulose
2.
Molecules ; 26(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34885897

ABSTRACT

In this work, the amino-functionalized cellulose nanocrystal (ACNC) was prepared using a green route and applied as a biosorbent for adsorption of Cr(VI), Pb2+, and Cu2+ from aqueous solutions. CNC was firstly oxidized by sodium periodate to yield the dialdehyde nanocellulose (DACNC). Then, DACNC reacted with diethylenetriamine (DETA) to obtain amino-functionalized nanocellulose (ACNC) through a Schiff base reaction. The properties of DACNC and ACNC were characterized by using elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Kaiser test, atomic force microscopy (AFM), X-ray diffraction (XRD), and zeta potential measurement. The presence of free amino groups was evidenced by the FT-IR results and Kaiser test. ACNCs exhibited an amphoteric nature with isoelectric points between pH 8 and 9. After the chemical modification, the cellulose I polymorph of nanocellulose remained, while the crystallinity decreased. The adsorption behavior of ACNC was investigated for the removal of Cr(VI), Pb2+, and Cu2+ in aqueous solutions. The maximum adsorption capacities were obtained at pH 2 for Cr(VI) and pH 6 for Cu2+ and Pb2+, respectively. The adsorption all followed pseudo second-order kinetics and Sips adsorption isotherms. The estimated adsorption capacities for Cr(VI), Pb2+, and Cu2+ were 70.503, 54.115, and 49.600 mg/g, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...