Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Article in English | MEDLINE | ID: mdl-38780293

ABSTRACT

ABSTRACT: The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.


Subject(s)
Apolipoproteins E , Atherosclerosis , Diet, High-Fat , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Mice , Male , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Mice, Knockout , Mice, Knockout, ApoE
2.
Curr Top Med Chem ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38798203

ABSTRACT

Cardio-cerebrovascular disease has seen a rapid rise in recent years, with Heart Failure (HF) -- a terminal stage of various cardiovascular diseases -- also on the rise. HF has a complex pathogenesis involving multiple factors, such as inflammation, fibrosis, and oxidative stress. Due to its unique reverse shear mechanism, HF exhibits distinct expression patterns across different diseases. CircRNA has been linked to conditions like cancer, diabetes, and osteoarthritis. This article briefly introduces the mechanisms of circRNA biogenesis and its associated biological functions, focusing on CircSLC8A1-1, CircRNA_000203, and others at the early stage of HF, CircRNA PAN3, CircRNA (ACR), and others during the progression of HF, and CircHIPK3, CircNfix, and others at the end stage of HF. These circRNAs play a participatory role in the exact mechanism. As a research method, circRNA can be utilized to study the pathogenesis of heart failure and serve as a target for drug discovery and development. Therefore, circRNA's ability to mark the disease at different stages has significant guiding implications for HF monitoring, treatment, and prognosis.

3.
Sci Rep ; 14(1): 12377, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811632

ABSTRACT

Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1ß, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1ß, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Drug Combinations , Heart Failure , Inflammation , Kynurenine , Tetrazoles , Tryptophan , Valsartan , Ventricular Remodeling , Animals , Aminobutyrates/pharmacology , Valsartan/pharmacology , Biphenyl Compounds/pharmacology , Ventricular Remodeling/drug effects , Kynurenine/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Rats , Tryptophan/metabolism , Male , Tetrazoles/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/blood , Rats, Sprague-Dawley
4.
Hum Immunol ; 85(2): 110765, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369442

ABSTRACT

Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.


Subject(s)
Atherosclerosis , Animals , Humans , Immunity, Innate , Adaptive Immunity , Inflammation , Leukocytes/pathology
5.
Anatol J Cardiol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372344

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a pathophysiological process connected to the onset of numerous heart disorders. The pathogenesis of MIRI is complex, and it mainly involves calcium overload, classic oxidative stress, mitochondrial disorder, inflammation, microvascular disorder, and cell death. The clinical treatment options for MIRI are presently constrained, making it imperative to develop new treatment modalities. Recent studies have demonstrated that ferroptosis is the main cause of MIRI. Ferroptosis is a new type of regulated iron-dependent cell death whose mechanism and targeted therapy are anticipated to be novel therapeutic techniques for MIRI. Herein, the primary mechanism underlying ferroptosis (the 3 major metabolic routes involving iron, amino acids, and lipids, and in MIRI, the specific mechanism and therapeutic target of ferroptosis) are discussed to determine the potential therapeutic approach for MIRI.

6.
Front Pharmacol ; 14: 1167260, 2023.
Article in English | MEDLINE | ID: mdl-37214467

ABSTRACT

Cardiorenal syndrome (CRS) results from complex interaction between heart and kidneys, inducing simultaneous acute or chronic dysfunction of these organs. Although its incidence rate is increasing with higher mortality in patients, effective clinical treatment drugs are currently not available. The literature suggests that renin-angiotensin-aldosterone system (RAAS) and diuretic natriuretic peptide (NP) system run through CRS. Drugs only targeting the RAAS and NPs systems are not effective. Sacubitril/valsartan contains two agents (sacubitril and valsartan) that can regulate RAAS and NPs simultaneously. In the 2017 American College of Cardiology/American Heart Association/American Heart Failure (HF) ssociation (ACC/AHA/HFSA) guideline, sacubitril/valsartan was recommended as standard therapy for HF patients. The latest research shows that Combined levosimendan and Sacubitril/Valsartan markets are protected the heart and kidney against cardiovascular syndrome in rat. However, fewer studies have reported its therapeutic efficacy in CRS treatment, and their results are inconclusive. Therefore, based on RAAS and NPs as CRS biomarkers, this paper summarizes possible pathophysiological mechanisms and preliminary clinical application effects of sacubitril/valsartan in the prevention and treatment of CRS. This will provide a pharmacological justification for expanding sacubitril/valsartan use to the treatment of CRS.

7.
Int J Mol Med ; 51(4)2023 04.
Article in English | MEDLINE | ID: mdl-36960868

ABSTRACT

The inflammasome regulates innate immunity by serving as a signaling platform. The Nod­like receptor protein 3 (NLRP3) inflammasome, equipped with NLRP3, the adaptor protein apoptosis­associated speck­like protein (ASC) and pro­caspase­1, is by far the most extensively studied and well­characterized inflammasome. A variety of stimuli can activate the NLRP3 inflammasome. When activated, the NLRP3 protein recruits the adaptor ASC protein and activates pro­caspase­1, resulting in inflammatory cytokine maturation and secretion, which is associated with inflammation and pyroptosis. However, the aberrant activation of the NLRP3 inflammasome has been linked to various inflammatory diseases, including atherosclerosis, ischemic stroke, Alzheimer's disease, diabetes mellitus and inflammatory bowel disease. Therefore, the NLRP3 inflammasome has emerged as a promising therapeutic target for inflammatory diseases. In the present review, systematic searches were performed using 'NLRP3 inhibitor(s)' and 'inflammatory disease(s)' as key words. By browsing the literature from 2012 to 2022, 100 articles were retrieved, of which 35 were excluded as they were reviews, editorials, retracted or unavailable online, and 65 articles were included. According to the retrieved literature, the current understanding of NLRP3 inflammasome pathway activation in inflammatory diseases was summarize, and inhibitors of the NLRP3 inflammasome pathway targeting the NLRP3 protein and other inflammasome components or products were highlighted. Additionally, the present review briefly discusses the current novel efforts in clinical research.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Caspase 1 , Inflammation/drug therapy
8.
J Inflamm (Lond) ; 20(1): 8, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823573

ABSTRACT

Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase ß (IKKß) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKß-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKß. There will be more opportunities to fully understand the complex functions of IKKß in atherogenesis and develop new effective therapies in the future.

9.
Front Pharmacol ; 13: 946668, 2022.
Article in English | MEDLINE | ID: mdl-36188542

ABSTRACT

The beneficial properties of Sodium Danshensu (SDSS) for controlling cerebral ischemia and reperfusion injury (CIRI) are elucidated here both in vivo and in vitro. SDSS administration significantly improved the viability of P12 cells, reduced lactate dehydrogenase (LDH) leakage, and decreased the apoptosis rate following exposure to an oxygen-glucose deprivation/reoxygenation (OGD) environment. In addition, the results of a HuprotTM human protein microarray and network pharmacology indicated that AKT1 is one of the main targets of SDSS. Moreover, functional experiments showed that SDSS intervention markedly increased the phosphorylation level of AKT1 and its downstream regulator, mTOR. The binding sites of SDSS to AKT1 protein were confirmed by Autodock software and a surface plasmon resonance experiment, the result of which imply that SDSS targets to the PH domain of AKT1 at ASN-53, ARG-86, and LYS-14 residues. Furthermore, knockdown of AKT1 significantly abolished the role of SDSS in protecting cells from apoptosis and necrosis. Finally, we investigated the curative effect of SDSS in a rat model of CIRI. The results suggest that administration of SDSS significantly reduces CIRI-induced necrosis and apoptosis in brain samples by activating AKT1 protein. In conclusion, SDSS exerts its positive role in alleviating CIRI by binding to the PH domain of AKT1 protein, further resulting in AKT1 activation.

10.
Metabolomics ; 18(6): 32, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35596842

ABSTRACT

INTRODUCTION: As the most common chronic complication of diabetes mellitus (DM), diabetic peripheral neuropathy (DPN) seriously affects the quality of life of DM patients. So, it is of great significance for the diagnosis and treatment of DPN. In recent years, there have been numerous studies on pathogenesis and biomarkers of DM, but there are few studies on the biomarkers of DPN. OBJECTIVES: This research is intended to identify abnormal metabolic pathways, search for potential biomarkers of DPN, and provide a metabolic basis for the diagnosis and mechanism of DPN. METHODS: Serum samples from 23 healthy controls (HC), 42 DM patients and 30 DPN patients and urine samples from 42 HC, 40 DM patients, and 30 DPN patients were collected. UPLC-Q-TOF/MS was used to analyze the samples. Potential biomarkers were screened from principal component analysis (PCA) to orthogonal partial least squares discriminant analysis (OPLS-DA) and further evaluated by receiver operating characteristic analysis (ROC). The biomarkers were then enriched and pathway analyzed. RESULTS: 12 potential DPN biomarkers were identified from patient's serum. 11 potential DPN biomarkers were identified from the patient's urine. Among them, the diagnostic ability of gluconic acid, lipoic acid, sphinganine, bilirubin, sphingosine and 4-hydroxybenzoic acid was increased by ROC analysis. Potential biomarkers suggest that the disorder of DPN metabolism may be linked to sphingolipid metabolism. CONCLUSIONS: This research laid a theoretical foundation for the diagnosis and pathogenesis of DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Humans , Biomarkers , Diabetic Neuropathies/diagnosis , Metabolomics , Quality of Life , Sphingolipids
11.
Article in English | MEDLINE | ID: mdl-35469165

ABSTRACT

Objective: To evaluate the effectiveness and safety of thrombolytic therapy combined with mild hypothermia in patients with acute cerebral infarction (ACI), based on a meta-analysis of randomized controlled trials (RCTs). Methods: PubMed, EMBASE, Cochrane Library, and Chinese National Knowledge Infrastructure Database of Controlled Trials were systematically screened for randomized controlled trials (RCTs) of thrombolytic therapy combined with mild hypothermia in treating ACI from inception to January 2021. Participation and outcomes among intervention enrollees are as follows: P, participants (patients in ACI); I, interventions (thrombolysis in combination with mild hypothermia therapy); C, controls (thrombolysis merely); O, outcomes (main outcomes are the change of NIHSS, glutathione peroxidase, superoxide dismutase, malondialdehyde, inflammatory factor interleukin-1ß, tumor necrosis factor-α, and adverse reaction). Following data extraction and quality assessment, a meta-analysis was performed using RevMan 5.3 software. Results: A total of 26 RCTs involving 2071 patients were included. Compared to thrombolysis alone, thrombolytic therapy combined with mild hypothermia leads to better therapeutic efficacy [RR = 1.23, 95% CI (1.16, 1.31)], NIHSS [MD = -2.02, 95% CI (-2.55, -1.49)], glutathione peroxidase [MD = 8.71, 95% CI (5.55, 11.87)], superoxide dismutase [MD = 16.52, 95% CI (12.31, 19.74)], malondialdehyde [MD = -1.86, 95% CI (-1.98, -1.75)], interleukin-1ß [MD = -3.48, 95% CI (-4.88, -2.08)], tumor necrosis factor-α [MD = -0.46, 95% CI (-3.39, 2.48)], and adverse reaction [RR = 0.87, 95% CI (0.63, 1.20)]. Conclusions: Thrombolytic therapy combined with mild hypothermia demonstrates a beneficial role in reducing brain nerve function impairment and inflammatory reactions in ACI subjects analysed in this meta-analysis.

12.
Anatol J Cardiol ; 26(1): 15-22, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35191381

ABSTRACT

Heart failure (HF) is a leading cause of mortality worldwide. The pathogenesis of HF is complex and has not yet been fully elucidated, which has slowed drug development and long-term treatments. Inflammasome-mediated responses occur during the progression of HF. It has been reported that energy metabolism and metabolites of intestinal flora are also involved in the process of HF, and they interact with each other to promote the progression of HF. NLR family pyrin domain containing 3 (NLRP3) inflammasome may be a key target in the relationship between inflammation-mediated energy metabolism and metabolites of intestinal flora. Elucidating the relationship among the above three factors may help to identify new molecular targets for the prevention and treatment of HF and ultimately affect the course of HF. In this study, we systematically summarize evidence regarding the relationship among NLRP3 inflammasome, energy metabolism, intestinal microflora metabolites, and inflammation, as well as highlight advantages of NLRP3 inflammasome in treating HF.


Subject(s)
Heart Failure , Inflammasomes , Heart Failure/drug therapy , Humans , Inflammasomes/metabolism , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
13.
Prostaglandins Other Lipid Mediat ; 158: 106608, 2022 02.
Article in English | MEDLINE | ID: mdl-34958945

ABSTRACT

The objective of this study was to investigate the protective effects of Shengmai Yin(SMY) on rats with chronic heart failure(CHF).Sprague-Dawley rats were used to establish a CHF animal model via ligation of the left anterior descending branch of the coronary artery and exhaustive swimming.Echocardiography, serum biochemical indicators and histopathology were used to evaluate the pharmacodynamics of SMY in CHF rats.UPLC-Q-TOF/MS analysis based on serum was performed to identify the potential metabolites in the pathological process of CHF. Metabolic pathway analysis was carried out to elucidate the metabolic network associated with SMY treatment of CHF.Moreover,quantitative real-time PCR (qRT-PCR), Western blotting (WB), and Enzyme-linked immunosorbent assay (ELISA) were used to measure the RNA and protein expression levels in related pathways. Results revealed that SMY significantly restored the cardiac function of CHF rats, reduced the serum biochemical indicators, and alleviated cardiac histological damage. Metabolomics analysis shows that the therapeutic effect of SMY for CHF involves 14 biomarkers and 8 metabolic pathways, especially linoleic acid pathway, to be influenced, which implied the potential mechanism of SMY in treating CHF. Two key indicators Lipoxygenase arachidonic acid 15 lipoxygenase (ALOX15) and Cytochrome P450 1A2(CYP1A2) of linoleic acid metabolism pathway were verified by RT-PCR, WB and ELISA. Verification result showed that compared with the model group, expression levels of ALOX15 and CYP1A2 in SMY group were lower. In conclusion, SMY has cardioprotective effect on chronic heart failure rats, and its mechanism may be related to linoleic acid metabolism pathway.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Animals , Drug Combinations , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Heart Failure/drug therapy , Heart Failure/metabolism , Linoleic Acid/pharmacology , Metabolomics , Rats , Rats, Sprague-Dawley
14.
Immun Inflamm Dis ; 10(3): e581, 2022 03.
Article in English | MEDLINE | ID: mdl-34904398

ABSTRACT

NLRP3 inflammasome activation in macrophages fuels sterile inflammation, which has been tied with metabolic reprogramming characterized by high glycolysis and low oxidative phosphorylation. The key enzymes in glycolysis and glycolysis-related products can regulate and activate NLRP3 inflammasome. In turn, NLRP3 inflammasome is considered to affect glycolysis, as well. However, the exact mechanism remains ambiguous. On the basis of these findings, the focus of this review is mainly on the developments in our understanding of interaction between NLRP3 inflammasome activation and glycolysis in macrophages, and small molecule compounds that influence the activation of NLRP3 inflammasomes by regulating glycolysis in macrophages. The application of this interaction in the treatment of diseases is also discussed. This paper may yield valuable clues for development of novel therapeutic agent for NLRP3 inflammasome-related diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Glycolysis , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
15.
Cell Cycle ; 20(11): 1033-1040, 2021 06.
Article in English | MEDLINE | ID: mdl-34000960

ABSTRACT

Apoptosis is closely associated with many diseases. Detection of apoptosis can be achieved by morphology, biochemistry, molecular biology, immunology, and other techniques. However, as technologies are increasingly used for the detection of apoptosis, many researchers are confused about how to choose a suitable method to detect apoptosis. Selection of a suitable detection method for apoptosis will help clinical diagnosis and prevention of diseases. This article reviews the selection of optimal apoptosis-detection methods based on research purposes and technique principles.


Subject(s)
Apoptosis/physiology , Cell Membrane/physiology , Cell Nucleus/physiology , Cytoplasm/physiology , Animals , Calcium/metabolism , Cell Membrane/chemistry , Cell Nucleus/chemistry , Cytoplasm/chemistry , Humans , Microscopy, Fluorescence/methods , Signal Transduction/physiology
16.
Front Cell Infect Microbiol ; 11: 618265, 2021.
Article in English | MEDLINE | ID: mdl-33816331

ABSTRACT

Background: Aging induced chronic systemic inflammatory response is an important risk factor for atherosclerosis (AS) development; however, the detailed mechanism is yet to be elucidated. Objective: To explore the underlying mechanism of how aging aggravates AS advancement. Methods: A young (five-week-old, YM) and aged group (32-week-old, OM) male apoE-/- mice with a high fat diet were used as models, and age-matched male wild-type C57BL/6J (WT) mice were used as controls. AS lesion size, serum lipid profile, cytokines, and gut microbiota-derived LPS were analyzed after 32 weeks of diet intervention. A correlation analysis between the 16S rRNA sequencing of the feces and serum metabolomics profiles was applied to examine the effect of their interactions on AS. Results: ApoE-/- mice developed severe atherosclerosis and inflammation in the aorta compared to the WT groups, and aged apoE-/- mice suffered from a more severe AS lesion than their younger counterparts and had low-grade systemic inflammation. Furthermore, increased levels of serum LPS, decreased levels of SCFAs production, as well as dysfunction of the ileal mucosal barrier were detected in aged mice compared with their younger counterparts. There were significant differences in the intestinal flora composition among the four groups, and harmful bacteria such as Lachnospiraceae_FCS020, Ruminococcaceae_UCG-009, Acetatifactor, Lachnoclostridium and Lactobacillus_gasseri were significantly increased in the aged apoE-/- mice compared with the other groups. Concurrently, metabolomics profiling revealed that components involved in the arachidonic acid (AA) metabolic pathway such as 20-HETE, PGF2α, arachidonic acid, and LTB4 were significantly higher in the aged AS group than in the other groups. This suggested that metabolic abnormalities and disorders of intestinal flora occurred in AS mice. Conclusions: Aging not only altered the gut microbiome community but also substantially disturbed metabolic conditions. Our results confirm that AA metabolism is associated with the imbalance of the intestinal flora in the AS lesions of aged mice. These findings may offer new insights regarding the role of gut flora disorders and its consequent metabolite changed in inflammaging during AS development.


Subject(s)
Atherosclerosis , Dysbiosis , Animals , Arachidonic Acid , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics
17.
Zhongguo Zhen Jiu ; 40(6): 629-34, 2020 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-32538015

ABSTRACT

OBJECTIVE: To explore the effects of electroacupuncture (EA) on skeletal muscle and blood glucose in rats with diabetic amyotrophy. METHODS: Among 40 SD rats, 10 rats were randomly selected into the control group and received no treatment. The remaining 30 rats were treated with intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) to establish diabetes mellitus (DM) model, and then the rats were treated with vascular ligation at right posterior limb to establish amyotrophy model. The rats with diabetic amyotrophy were randomly divided into a model group and an EA group, 10 rats in each group (10 rats were excluded due to unsuccessful model establishment and death). The rats in the EA group was treated with EA at right-side "Yishu (EX-B 3)" "Shenshu (BL 23)" "Zusanli (ST 36)" and "Sanyinjiao (SP 6)", disperse-dense wave, 2 Hz/ 15 Hz, 20 minutes each time, once a day for 3 weeks. Before and after EA treatment, the blood sample was collected from inner canthus and the "glucose oxidase-peroxidase" method was used to detect fasting blood glucose level; ELISA method was used to detect insulin content. At the end of the treatment, HE staining method was used to observe the morphology of ischemic skeletal muscle in the right hindlimb; the real-time PCR method was used to detect the mRNA expression of muscle atrophy F-box (MAFbx), muscle ring finger-1 (MuRF1) and forkhead box O3a (FOXO3a) in the ischemic skeletal muscle tissue of right hindlimb. RESULTS: Before the treatment, the body mass in the model group and EA group was lower than that in the control group (P<0.01); after the treatment, the body mass in the control group was increased, while the body mass in the model group and EA group was decreased (P<0.01). Compared with the control group, the fasting blood glucose was significantly increased and insulin content was significantly decreased in the model group (P<0.01); compared with the model group, the fasting blood glucose was significantly decreased and the insulin content was significantly increased in the EA group after treatment (P<0.01). The muscle fibers of the model group were obviously broken, the number of the nuclei decreased, and the nuclei shrinked or even dissolved; the morphology of the muscle tissue of the EA group after intervention was improved compared with the model group. Compared with the control group, the cross-sectional area of ischemic skeletal muscle cells in the right hindlimb in the model group was decreased (P<0.01); compared with the model group, the cross-sectional area of ischemic skeletal muscle cells in the right hindlimb was increased in EA group (P<0.05). Compared with the control group, the levels of MAFbx, MuRF1 and FOXO3a mRNA in the right hindlimb ischemic skeletal muscle in the model group were increased significantly (P<0.01, P<0.05); compared with the model group, the levels of MAFbx, MuRF1 and FOXO3a mRNA in the EA group were decreased significantly (P<0.05, P<0.01). CONCLUSION: EA may play a role in the treatment of diabetic amyotrophy by inducing FOXO3a to reduce the transcription of MAFbx and MuRF1.


Subject(s)
Blood Glucose , Diabetic Neuropathies/therapy , Electroacupuncture , Muscle, Skeletal/physiology , Acupuncture Points , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/therapy , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Curr Atheroscler Rep ; 22(8): 31, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32556603

ABSTRACT

PURPOSE: Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis. RECENT FINDINGS: ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR-/- mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.


Subject(s)
Atherosclerosis/metabolism , Macrophages/classification , Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Animals , Dendritic Cells/metabolism , Humans , Inflammation/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Monocytes/metabolism , Phenotype , RNA-Seq/methods , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Single-Cell Analysis/methods , Transcriptome
19.
J Cell Commun Signal ; 14(3): 293-301, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32236886

ABSTRACT

This review focuses on current advances in researches of gasdermin family. The distinctive expression patterns and biological roles of members in this family were discussed. Most of them exhibit pore-forming activity on cell membranes and are executors for programmed cell death with cytokines release, and play roles in cancers and inflammation-driven diseases. Therefore, they can be used as potential therapeutic targets to treat related diseases.

20.
Zhen Ci Yan Jiu ; 45(10): 789-92, 2020 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-33788443

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) on the expression of soluble guanylate cyclase (sGC), cyclic guanosine phosphate (cGMP) and protein kinase G (PKG) of cerebral vascular smooth muscle in cerebral infarction (CI) rats, so as to study its dynamic regulation mechanism. METHODS: Male Wistar rats were randomly divided into normal control (n=10), sham operation (n=40), model (n=40), and EA (n=40) groups, and the latter three groups were further di-vided into 3, 6, 12 and 24 h subgroups (n=10 in each subgroup). The CI model was established by occlusion of the middle cerebral artery (MCAO). EA(15 Hz, 2 mA)was applied to "Shuigou" (GV26) for 20 min. The cGMP, sGC and PKG activity and expression levels in the vascular smooth muscle of cerebral artery were detected using ELISA and Western blot, respectively. RESULTS: After modeling, the immunoactivity and activities of sGC at 3 h, PKG at 3 and 6 h and cGMP from 3 h to 24 h were ob-viously decreased in the model group relevant to the normal control and sham-operation groups (P<0.05, P<0.01). After the intervention, the expression levels and activities of sGC at 3 h, PKG at 3 and 6 h and cGMP at 3 and 6 h were apparently up-regulated in the EA group relevant to the model group (P<0.05). CONCLUSION: EA intervention can significantly inhibit the down-regulation of sGC, PKG and cGMP expression of cerebral artery smooth muscle in MCAO model rats, which plays an important role in inhibiting cerebral artery smooth muscle spasm after ischemia, maintaining normal vascular function and state, and thus increasing blood perfusion around cerebral infarction area. However, acupuncture effect has a certain time-effectiveness.


Subject(s)
Brain Ischemia , Electroacupuncture , Animals , Cerebral Infarction/genetics , Cerebral Infarction/therapy , Cyclic GMP-Dependent Protein Kinases/genetics , Male , Muscle, Smooth, Vascular , Rats , Rats, Wistar , Soluble Guanylyl Cyclase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...