Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters










Publication year range
1.
Sleep Breath ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861133

ABSTRACT

PURPOSE: To investigate the impact of obstructive sleep apnea (OSA) on postoperative delirium (PD), and evaluate the effectiveness of positive airway pressure (PAP) therapy on PD among OSA patients. METHODS: We systematically searched Embase, Cochrane Library and PubMed databases from their establishment to November 27, 2022. A random-effects approach was employed to determine aggregated results. Subgroup and sensitivity analyses were carried out to investigate heterogeneity. RESULTS: Sixteen eligible studies were included in the analysis. Thirteen studies revealed that OSA significantly elevated the likelihood of developing PD (OR = 1.71; 95%CI = 1.17 to 2.49; p = 0.005). Subgroup analysis according to delirium assessment scales showed that OSA did not exhibit an association with the incidence of PD assessed by the Confusion Assessment Method-Intensive Care Unit (OR = 1.14; 95%CI = 0.77 to 1.67; p = 0.51) but enhanced the likelihood of developing PD evaluated with other measurement scales (OR = 2.15; 95%CI = 1.44 to 3.19; p = 0.0002). Three additional studies explored the impact of PAP treatment on PD among OSA individuals, indicating no significant reduction in PD incidence with PAP use (OR = 0.58; 95%CI = 0.13 to 2.47; p = 0.46). CONCLUSIONS: OSA may not be a risk factor for PD in critically ill patients in the intensive care unit, but may increase the likelihood of developing PD among individuals receiving regular care in the ward postoperatively. The efficacy of PAP therapy in decreasing PD incidence among OSA patients remains debatable.

2.
Int J Biol Macromol ; 273(Pt 1): 133051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862057

ABSTRACT

Pollen is a promising material for water treatment owing to its renewable nature, abundant sources, and vast reserves. The natural polymer sporopollenin, found within pollen exine, possesses a distinctive layered porous structure, mechanical strength, and stable chemical properties, which can be utilized to prepare sporopollenin exine capsules (SECs). Leveraging these attributes, pollen or SECs can be used to develop water pollution remediation materials. In this review, the structure of pollen is first introduced, followed by the categorization of various methods for extracting SECs. Then, the functional expansion of pollen adsorbents, with an emphasis on their recyclability, reusability, and visual sensing capabilities, as opposed to mere functional group modification, is discussed. Furthermore, the progress made in utilizing pollen as a biological template for synthesizing catalysts is summarized. Intriguingly, pollen can also be engineered into self-propelled micromotors, enhancing its potential application in adsorption and catalysis. Finally, the challenges associated with the application of pollen in water pollution treatment are discussed. These challenges include the selection of environmentally friendly, non-toxic reagents in synthesizing pollen water remediation products and the large-scale application after synthesis. Moreover, the multifunctional synthesis and application of different water remediation products are prospected.


Subject(s)
Carotenoids , Pollen , Pollen/chemistry , Biopolymers/chemistry , Carotenoids/chemistry , Water Purification/methods , Adsorption , Water Pollutants, Chemical/chemistry , Catalysis , Water Pollution/prevention & control
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612943

ABSTRACT

Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Endothelial Cells , Algorithms , Single-Cell Analysis , Antimetabolites , DNA Modification Methylases , Drug Discovery , Kidney Neoplasms/drug therapy , DNA , Tumor Microenvironment
4.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607120

ABSTRACT

Lightweight and low-cost one-dimensional carbon materials, especially biomass carbon fibers with multiple porous structures, have received wide attention in the field of electromagnetic wave absorption. In this paper, graphene-coated N-doped porous carbon nanofibers (PCNF) with excellent wave absorption properties were successfully synthesized via electrostatic spinning, electrostatic self-assembly, and high-temperature carbonization. The obtained results showed that the minimum reflection loss of the absorbing carbon fiber obtained under the carbonization condition of 800 °C is -51.047 dB, and the absorption bandwidth of reflection loss below -20 dB is 10.16 GHz. This work shows that carbonization temperature and filler content have a certain effect on the wave-absorbing properties of fiber, graphene with nanofiber, and the design and preparation of high-performance absorbing materials by combining the characteristics of graphene and nanofibers and multi-component coupling to provide new ideas for the research of absorbing materials.

5.
Biomater Sci ; 12(11): 2801-2830, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38683241

ABSTRACT

Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.


Subject(s)
Bone and Bones , Neovascularization, Physiologic , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Osteogenesis/drug effects , Humans , Neovascularization, Physiologic/drug effects , Animals , Tissue Scaffolds/chemistry , Angiogenesis
6.
Food Funct ; 15(7): 3411-3419, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38470815

ABSTRACT

Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.


Subject(s)
Lung Injury , NF-kappa B , Polybrominated Biphenyls , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Inflammation/metabolism , Polyphenols/pharmacology , Tea , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/pharmacology
7.
Microbiol Spectr ; 12(4): e0418223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38376358

ABSTRACT

Given the burgeoning Nyctereutes procyonoides breeding industry and its growing scale, it is imperative to investigate the impact of high-fat diets on the health of these animals. This study involved 30 male Nyctereutes procyonoides of comparable weights (3 kg ±0.5), randomly assigned to either a control group or a high-fat diet group (n = 15 each). The latter group was fed a mixture of lard and basal diet in a 2:5 ratio, establishing a high-fat diet model in Nyctereutes procyonoides. This diet induced diarrhea and histopathological changes in the Nyctereutes procyonoides. Analysis of the small intestine contents using 16S rRNA sequencing revealed a high-fat diet-induced disruption in the gut microbiota. Specifically, Escherichia-Shigella emerged as the biomarker in the high-fat diet group (P = 0.049), while Vagococcus was prevalent in the control group (P = 0.049), indicating a significant increase in harmful bacteria in the high-fat diet group. Furthermore, this disrupted gut flora correlated with inflammation and oxidative stress, as evidenced by marked increases in TNF-α (P < 0.01), IL-1ß (P < 0.05), and IL-6 (P < 0.05) levels, measured via q-PCR, Western blot, and oxidative stress assays. In addition, q-PCR analysis revealed significant upregulation of apoptosis and necrosis markers, including Bax, Caspase3, Caspase9, Caspase12, RIPK3, and RIPK1 (P < 0.01 to P < 0.001), and a concurrent downregulation of the anti-apoptotic gene Bcl-2 (P < 0.01) in the high-fat diet group, consistent with protein expression trends. These findings suggest that a high-fat diet alters the gut microbiome toward a more harmful bacterial composition, escalating inflammatory responses and intestinal tissue permeability, culminating in intestinal cell apoptosis and necrosis.IMPORTANCEThis study examines the impact of high-fat diets on Nyctereutes procyonoides. Our research established a Nyctereutes procyonoides model on a high-fat diet, revealing significant health impacts, such as diarrhea, histological anomalies, and alterations in the gut microbiota. These findings emphasize the importance of preventing health issues and promoting sustainable industry growth. They highlight the significant impact of diet on gut microbiota and overall animal health.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Animals , Male , Apoptosis , Bacteria/genetics , Diarrhea , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/genetics , Inflammation , Intestines/microbiology , Necrosis , Raccoon Dogs/genetics , RNA, Ribosomal, 16S/genetics , Tight Junctions
8.
Aquat Toxicol ; 269: 106870, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395010

ABSTRACT

Microplastics (MPs) are a serious threat to the living environment of aquatic organisms. However, there are fewer studies on the toxicity of microplastics to freshwater organisms. This study aimed to establish a polystyrene microplastics (PS-MPs) model by feeding carp (Cyprinus carpio) PS-MP (1000 ng/L) particles 8 µm in size. HE staining revealed a mass of inflammatory cells infiltrated in the carp hepatopancreas. The activities of alkaline phosphatase (AKP), aspartate transaminase (AST), lactate dehydrogenase (LDH), and alanine transaminase (ALT) were strengthened considerably, suggesting that PS-MPs cause injury to the hepatopancreas of carp. Real-Time polymerase chain reaction and western blotting results indicated increased levels of glucose-regulated protein 78 (GRP78), (PKR)-like ER kinase (PERK), eukaryotic translation initiation Factor 2α (EIF2α) and activating transcription Factor 4 (ATF4) genes and increased levels of inflammatory factors downstream of endoplasmic reticulum stress (ERs) thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and caspase 1. Increased expression of microtubule-associated protein-2 (LC3II), autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) genes revealed that PS-MPs promoted autophagy in carp hepatocytes. The enhanced expression of the Caspase 12, Caspase 3, and Bax genes suggested that PS-MPs led to the apoptosis of carp hepatocytes. These results suggest that PS-MPs result in serious injury to the hepatopancreas of carp. The present study of PS-MPs in freshwater fish from the aspect of endoplasmic reticulum stress was conducted to provide references and suggestions for toxicological studies of PS-MPs in freshwater environments.


Subject(s)
Carps , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Water Pollutants, Chemical/toxicity , Cell Death , Apoptosis , Hepatocytes , Polystyrenes/toxicity , Inflammation , Endoplasmic Reticulum Stress
9.
PLoS One ; 19(1): e0295426, 2024.
Article in English | MEDLINE | ID: mdl-38266003

ABSTRACT

This study utilizes panel data from 30 provinces in mainland China from 2011 to 2020 to investigate the impact of carbon-neutral development on economic high-quality development by constructing an economic high-quality development index and a carbon-neutral development index. Firstly, the study examines the effects of carbon-neutral development on economic high-quality development using baseline regression and spatial Durbin regression. The results indicate that carbon-neutral development has a positive direct effect on economic high-quality growth, but there are negative spatial spillover effects. Secondly, this study employs total factor productivity (TFP) as an intermediate variable in the mediation model regression. The findings demonstrate that carbon-neutral development significantly improves TFP, and the significant improvement in TFP promotes high-quality economic growth. Lastly, the study conducts regional heterogeneity analysis and finds a significant promoting effect of carbon-neutral development on economic high-quality development in the eastern and central regions of China, while it is not significant in the western region. Therefore, it is recommended that China, in the process of achieving carbon-neutral growth, consider the geographical connections between different regions to prevent negative spillover effects. Additionally, regional heterogeneity should be taken into account when formulating relevant policies to promote economic high-quality development.


Subject(s)
Economic Development , Social Conditions , Carbon , China , Geography
10.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242263

ABSTRACT

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Subject(s)
Carps , Ferroptosis , Polybrominated Biphenyls , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Antioxidants/metabolism , Toll-Like Receptor 4/genetics , Carps/metabolism , Gills , Polyphenols/pharmacology , Polyphenols/metabolism , Signal Transduction , Fish Proteins , Inflammation/chemically induced , Inflammation/veterinary , Inflammation/metabolism , Apoptosis , Tea/metabolism
11.
Sci Total Environ ; 917: 170518, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286276

ABSTRACT

Microplastics (MPs) are ubiquitous environmental contaminants that have negative impacts on health and safety. The gut microbiota plays multiple roles as a newly discovered virtual metabolic organ. The objective of this study was to investigate the potential of MPs to cause liver injury by disrupting the balance of gut microbiota. The results indicated that exposure to MPs resulted in liver damage and disrupted the homeostasis of gut microbiota. MPs significantly reduced the liver organ coefficient, leading to liver cell injury and impaired function. Additionally, there was an increase in the expression of fibril-related proteins, which positively correlated with MPs concentration. Furthermore, MPs increased the relative abundances of Desulfovibrio, Clostridia, Enterorhabdus, Bacteroides, and Gemella while decreasing the abundance of Dubosoella. Different concentrations of MPs exhibited varying effects on specific bacterial groups, however, both concentrations resulted in an increase in pathogenic bacteria and a decrease in beneficial bacteria, as well as alterations in microbial structure. Moreover, MPs induced oxidative stress, inflammation, apoptosis and necrosis in liver cells. The study found that MPs disrupted gut microbiota homeostasis and activated TLR2/NF-κB/NLRP3 pathway in the liver, providing a new insight into the mechanism underlying MPs-induced liver injury. These findings serve as a warning regarding environmental pollution caused by MPs.


Subject(s)
Gastrointestinal Microbiome , Polyethylene , Animals , Mice , NF-kappa B , Microplastics/toxicity , Plastics , Toll-Like Receptor 2 , Dysbiosis/chemically induced , NLR Family, Pyrin Domain-Containing 3 Protein , Liver
12.
Sleep Med ; 113: 275-283, 2024 01.
Article in English | MEDLINE | ID: mdl-38071926

ABSTRACT

OBJECTIVE: The meta-analysis aimed to evaluate the efficacy of mandibular advancement device (MAD) for the treatment of obstructive sleep apnea (OSA) and explore the effect of different positions on MAD for OSA. METHODS: The Embase, PubMed, Medline, and Cochrane Library databases were searched for relevant studies evaluating the effect of MAD on the treatment of OSA from database inception to November 2022. The Bayesian random-effects mode was used to calculate the pooled outcome. Subgroup analysis and sensitivity analysis were applied to investigate the heterogeneity. RESULTS: A total of 6 studies enrolling 643 patients were eligible for further analysis. MAD treatment led to improvements in total apnea-hypopnea index (AHI) for both positional OSA(POSA) and Non-POSA groups, but there was no significant difference in the effect of MAD on Non-POSA and POSA (MD = -1.46,95%CI [-4.89,1.97], P = 0.40). In the supine position, AHI improvement after MAD treatment in POSA group was more than that in Non-POSA group by 15 events/hour in average (MD = 14.82, 95%CI [11.43,18.22], P<0.00001), while in the non-supine position, the change of AHI in Non-POSA group was significantly better than that in POSA group by approximately 8 events/hour (MD = -7.55,95%CI[-10.73,-4.38],p < 0.00001). CONCLUSION: MAD is more suitable for POSA compared to Non-POSA in patients with habitual sleep in the supine or supine predominant position. While for patients with habitual sleep in the non-supine position, MAD is an effective treatment option for Non-POSA.


Subject(s)
Occlusal Splints , Sleep Apnea, Obstructive , Humans , Bayes Theorem , Polysomnography , Sleep Apnea, Obstructive/therapy , Supine Position
13.
Plant Physiol Biochem ; 206: 108140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134738

ABSTRACT

Carboxylesterase (CXE) is a class of hydrolases that contain an α/ß folding domain, which plays critical roles in plant growth, development, and stress responses. Based on the genomic and transcriptomic data of Salvia miltiorrhiza, the SmCXE family was systematically analyzed using bioinformatics. The results revealed 34 SmCXE family members in S. miltiorrhiza, and the SmCXE family could be divided into five groups (Group I, Group II, Group III, Group IV, and Group V). Cis-regulatory elements indicated that the SmCXE promoter region contained tissue-specific and development-related, hormone-related, stress-related, and photoresponsive elements. Transcriptome analysis revealed that the expression levels of SmCXE2 were highest in roots and flowers (SmCXE8 was highest in stems and SmCXE19 was highest in leaves). Further, two GA receptors SmCXE1 (SmGID1A) and SmCXE2 (SmGID1B) were isolated from the SmCXE family, which are homologous to other plants. SmGID1A and SmGID1B have conserved HGGSF motifs and active amino acid sites (Ser-Asp-Val/IIe), which are required to maintain their GA-binding activities. SmGID1A and SmGID1B were significantly responsive to gibberellic acid (GA3) and methyl jasmonate (MeJA) treatment. A subcellular assay revealed that SmCXE1 and SmCXE2 resided within the nucleus. SmGID1B can interact with SmDELLAs regardless of whether GA3 exists, whereas SmGID1A can only interact with SmDELLAs in the presence of GA3. A Further assay showed that the GRAS domain mediated the interactions between SmGID1s and SmDELLAs. This study lays a foundation for further elucidating the role of SmCXE in the growth and development of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Carboxylesterase/genetics , Carboxylesterase/metabolism , Plant Proteins/metabolism , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant
14.
Aquat Toxicol ; 265: 106780, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38041969

ABSTRACT

Microplastics (MPs) are widely distributed pollutants in the environment and accumulate in the aquatic environment due to human activities. Carp, a common edible aquatic organism, has been found to accumulate MPs in body. MicroRNA (miRNAs) is a non-coding short RNA that regulates protein expression by binding to target genes in various physiological processes such as proliferation, differentiation and apoptosis. The ovary is a crucial role in carp reproduction. In this study, we established a model of carp exposed to polyethylene microplastics (PE-MPs) in the aquatic environment to investigate the specific mechanism of PE-MPs causing ovarian injury and the involvement of miR-132/calpain (CAPN) axis. H&E stained sections revealed that PE-PMs induced inflammation in ovarian tissues and impaired oocyte development. TUNEL analysis showed an increased rate of apoptosis in ovarian cells treated with PE-PMs. RT-PCR and Western Blot assays confirmed that exposure to PE-MPs significantly decreased miR-132 expression while increasing CAPN expression at both mRNA and protein levels. The concentration of calcium ions was significantly increased in tissues, leading to CAPN enzyme activity increase. The expression of mitochondrial damage-related genes (bax, AIF, cyt-c, caspase-7, caspase-9, and caspase-3) was higher while the expression of anti-apoptotic genes (bcl-2 and bcl-xl) was lower. Protein levels of bax, AIF, caspase-3, bcl-2 and bcl-xl changed accordingly with the genetic alterations. Additionally, we discovered that PE-MPs can activate the p65 factor through the TRAF6/NF-kB pathway resulting in elevated production of pro-inflammatory factors IL-6, IL-1ß and TNF-a which contribute to ovarian inflammation development. This study investigates the impact of PE-MPs on carp ovarian function and provides insights into miRNAs' role and their target genes.


Subject(s)
Carps , MicroRNAs , Water Pollutants, Chemical , Animals , Female , Humans , Microplastics , Polyethylene , Caspase 3/genetics , Plastics , Calpain , bcl-2-Associated X Protein , Ovary , Water Pollutants, Chemical/toxicity , Proto-Oncogene Proteins c-bcl-2/genetics , MicroRNAs/genetics , Apoptosis/genetics , Inflammation/chemically induced
15.
Antioxidants (Basel) ; 12(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136197

ABSTRACT

Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.

16.
Foods ; 12(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38137253

ABSTRACT

This study aimed to investigate the effects of the covalent binding of flaxseed protein (FP) and chlorogenic acid (CA) on the structure and functional properties of FP-CA complexes fabricated using the alkali method. The results suggested that the encapsulation efficiency of CA encapsulated by FP ranged from 66.11% to 72.20% and the loading capacity of CA increased with an increasing addition ratio of CA with a dose-dependent relationship, which increased from 2.34% to 10.19%. The particle size, turbidity, zeta potential and PDI of FP and the FP-CA complexes had no significant discrepancy. UV-Vis and fluorescence spectra showed the existence of the interaction between FP and CA. SEM images showed that the surface of the FP-0.35%CA complex had more wrinkles compared to FP. Differential scanning calorimetry analysis indicated the decomposition temperature of FP at 198 °C was higher than that (197 °C) of the FP-0.35%CA complex, implying that the stability of the FP-CA complexes was lower than FP. The functional properties suggested that the FP-CA complex with 1.40% CA had a higher water holding capacity (500.81%), lower oil holding capacity (273.495%) and lower surface hydrophobicity. Moreover, the FP-CA complexes had better antioxidant activities than that of FP. Therefore, this study provides more insights for the potential application of FP-CA covalent complexes in functional food processing.

17.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834613

ABSTRACT

In this work, we prepared a green, cheap material by chelating humic acid with ferric ions (HA-Fe) and used it as an anode material in LIBs for the first time. From the SEM, TEM, XPS, XRD, and nitrogen adsorption-desorption experimental results, it was found that the ferric ion can chelate with humic acid successfully under mild conditions and can increase the surface area of materials. Taking advantage of the chelation between the ferric ions and HA, the capacity of HA-Fe is 586 mAh·g-1 at 0.1 A·g-1 after 1000 cycles. Moreover, benefitting from the chelation effect, the activation degree of HA-Fe (about 8 times) is seriously improved compared with pure HA material (about 2 times) during the change-discharge process. The capacity retention ratio of HA-Fe is 55.63% when the current density increased from 0.05 A·g-1 to 1 A·g-1, which is higher than that of HA (32.55%) and Fe (24.85%). In the end, the storage mechanism of HA-Fe was investigated with ex-situ XPS measurements, and it was found that the C=O and C=C bonds are the activation sites for storage Li ions but have different redox voltages.

18.
Aquat Toxicol ; 262: 106659, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586228

ABSTRACT

Microplastics (MPs), a new class of pollutant that threatens aquatic biodiversity, are becoming increasingly prevalent around the world. Fish growth may be severely inhibited by microplastics, resulting in severe mortality. Exposure to microplastics increases the likelihood of intestinal injuries, but the underlying mechanisms remain equivocal. The objective of this study was to investigate the potential toxic mechanisms underlying microplastic-induced intestinal injury in fish and to assist researchers in identifying novel therapeutic targets. In this study, a model of carp exposed to microplastics was established successfully. Histological observation showed that exposure to polyethylene microplastics caused damage to the intestinal mucosal surface and a significant increase in goblet cells, which aggregated on the surface of the mucosa. The mucosal layer was observed to fall off. Lymphocytes in the intestinal wall proliferated and aggregated. TUNEL staining showed that apoptosis occurred in the group exposed to microplastics. The qPCR results showed that the expression of Ferroptosis apoptotic factors COX-2 and ACSL4 was upregulated, while the expression of TFRC, FIH1, SLC7A11, and GPX4 was downregulated. The NF-κB pathway (p-p65, IκBα), inflammatory cytokines (TNF-α, IL-8, IL-6) and apoptosis genes (Bax, Caspase3) were upregulated. Semi-quantitative detection of related proteins by Western blotting was consistent with the gene expression results. In addition, the ELISA assay showed that lipid peroxidation and inflammatory cytokines (TNF-α, IL-1ß, IL-6) were increased in the microplastic exposed group. To conclude, lipid peroxidation induced by microplastics activates the NF-κB pathway and causes ferroptosis, ultimately resulting in intestinal damage and cellular apoptosis.


Subject(s)
Carps , Ferroptosis , Water Pollutants, Chemical , Animals , NF-kappa B/metabolism , Microplastics/toxicity , Plastics/toxicity , Signal Transduction , Tumor Necrosis Factor-alpha , Interleukin-6/toxicity , Interleukin-6/therapeutic use , Carps/metabolism , Water Pollutants, Chemical/toxicity , Inflammation/chemically induced , Inflammation/metabolism , Cytokines/genetics , Apoptosis
19.
Fish Shellfish Immunol ; 139: 108905, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348685

ABSTRACT

A lack of the trace element zinc (Zn) in freshwater environments causes slow growth and malnutrition and affects the normal biological functions of organisms. In this study, a Zn deficiency model of grass carp hepatocytes was established with TPEN. Acetylcysteine (NAC) was used as an inhibitor. TPEN was added to L8824 cell culture medium, and LDH, AST, ALT, and AKP activities were enhanced in a Zn-deficient environment, leading to abnormal hepatopancreas function. Fluorescence microscopy showed an increase in ROS levels, and antioxidant enzyme activity assays revealed that SOD, CAT, GSH-PX, and T-AOC activities were decreased, indicating oxidative stress caused by Zn deficiency. The RT‒PCR results showed that the mRNA expression of GRP78, PERK, EIF2α, ATF4, and Chop was increased due to the addition of TPEN. Calcium kits showed increased Ca2+ levels. The RT‒PCR results showed that the mRNA expression levels of Caspase-12, Caspase-9, Caspase-3, and PARP apoptotic were increased due to the addition of TPEN. RT‒PCR and ELISA showed that the expression levels of interleukin-1ß (IL-1ß), interleukin-8 (IL-8), tumour necrosis factor (TNF-α), and inducible nitric oxide synthase (iNOS) were increased. This led to the conclusion that Zn deficiency in the freshwater environment caused inflammation and apoptosis in hepatocytes in grass carp. For the first time, apoptosis caused by endoplasmic reticulum stress in grass carp hepatocytes due to Zn deficiency was studied in the context of Ca2+. The present study provided some insight into the adverse effects of Zn deficiency in freshwater environments on fish.


Subject(s)
Carps , Malnutrition , Animals , Diet , Inflammation/chemically induced , Inflammation/veterinary , Oxidative Stress , Apoptosis , Hepatocytes , Zinc/pharmacology , Endoplasmic Reticulum Stress , RNA, Messenger
20.
Fish Shellfish Immunol ; 138: 108847, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37230306

ABSTRACT

Selenium (Se), one of the essential trace elements of fish, regulates immune system function and maintains immune homeostasis. Muscle is the important tissue that generate movement and maintain posture. At present, there are few studies on the effects of Se deficiency on carp muscle. In this experiment, carps were fed with dietary with different Se content to successfully establish a Se deficiency model. Low-Se dietary led to the decrease of Se content in muscle. Histological analysis showed that Se deficiency resulted in muscle fiber fragmentation, dissolution, disarrangement and increased myocyte apoptosis. Transcriptome revealed a total of 367 differentially expressed genes (DEGs) were screened, including 213 up-regulated DEGs and 154 down-regulated DEGs. Bioinformatics analysis showed that DEGs were concentrated in oxidation-reduction process, inflammation and apoptosis, and were related to NF-κB and MAPKs pathways. Further exploration of the mechanism showed that Se deficiency led to excessive accumulation of ROS, decreased the activity of antioxidant enzymes, and also resulted in increased expression of the NF-κB and MAPKs pathways. In addition, Se deficiency significantly increased the expressions of TNF-α, IL-1ß and IL-6, and the pro-apoptotic factors BAX, p53, caspase-7 and caspase-3, while decreased the expressions of anti-apoptotic factors Bcl-2 and Bcl-xl. In conclusion, Se deficiency reduced the activities of antioxidant enzymes and led to excessive accumulation of ROS, which caused oxidative stress and affected the immune function of carp, leading to muscle inflammation and apoptosis.


Subject(s)
Carps , Malnutrition , Selenium , Animals , Antioxidants/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Dietary Supplements , Selenium/metabolism , Carps/genetics , Carps/metabolism , Reactive Oxygen Species/metabolism , Immunity, Innate , Signal Transduction , Inflammation/veterinary , Apoptosis , Muscles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...