Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435554

ABSTRACT

In this paper, we propose a novel guided normal filtering followed by vertex updating for mesh denoising. We introduce a two-stage scheme to construct adaptive consistent neighborhoods for guided normal filtering. In the first stage, we newly design a consistency measurement to select a coarse consistent neighborhood for each face in a patch-shift manner. In this step, the selected consistent neighborhoods may still contain some features. Then, a graph-cut based scheme is iteratively performed for constructing different adaptive neighborhoods to match the corresponding local shapes of the mesh. The constructed local neighborhoods in this step, known as the adaptive consistent neighborhoods, can avoid containing any geometric features. By using the constructed adaptive consistent neighborhoods, we compute a more accurate guide normal field to match the underlying surface, which will improve the results of the guide normal filtering. With the help of the adaptive consistent neighborhoods, our guided normal filtering can preserve geometric features well, and is robust against complex shapes of surfaces. Intensive experiments on various meshes show the superiority of our method visually and quantitatively.

2.
Article in English | MEDLINE | ID: mdl-33096649

ABSTRACT

The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly impacts the regional environment and human health. This study assesses PM2.5 exposure and health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal big data, including Tencent location-based services (LBS) data, place of interest (POI), and PM2.5 site monitoring data. Specifically, the empirical orthogonal function (EOF) is utilized to analyze the spatiotemporal variation of PM2.5 concentration firstly. Then, population exposure and health risks of PM2.5 during the COVID-19 epidemic have been assessed based on LBS data. To further understand the driving factors of PM2.5 pollution, the relationship between PM2.5 concentration and POI data has been quantitatively analyzed using geographically weighted regression (GWR). The results show the time series coefficients of monthly PM2.5 concentrations distributed with a U-shape, i.e., with a decrease followed by an increase from January to December. In terms of spatial distribution, the PM2.5 concentration shows a noteworthy decline over the Central and North China. The LBS-based population density distribution indicates that the health risk of PM2.5 in the west is significantly lower than that in the Middle East. Urban gross domestic product (GDP) and urban green area are negatively correlated with PM2.5; while, road area, urban taxis, urban buses, and urban factories are positive. Among them, the number of urban factories contributes the most to PM2.5 pollution. In terms of reducing the health risks and PM2.5 pollution, several pointed suggestions to improve the status has been proposed.


Subject(s)
Big Data , Coronavirus Infections , Environmental Exposure/analysis , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Risk Assessment , Betacoronavirus , COVID-19 , China/epidemiology , Humans , Middle East , SARS-CoV-2 , Spatio-Temporal Analysis
3.
Sensors (Basel) ; 19(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847218

ABSTRACT

Graph learning methods, especially graph convolutional networks, have been investigated for their potential applicability in many fields of study based on topological data. Their topological data processing capabilities have proven to be powerful. However, the relationships among separate entities include not only topological adjacency, but also correlation in vision, for example, the spatial vector data of buildings. In this study, we propose a spatial adaptive algorithm framework with a data-driven design to accomplish building group division and building group pattern recognition tasks, which is not sensitive to the difference in the spatial distribution of the buildings in various geographical regions. In addition, the algorithm framework has a multi-stage design, and processes the building group data from whole to parts, since the objective is closely related to multi-object detection on topological data. By using the graph convolution method and a deep neural network (DNN), the multitask model in this study can learn human thoughts through supervised training, and the whole process only depends upon the descriptive vector data of buildings without any ancillary data for building group partition. Experiments confirmed that the method for expressing buildings and the effect of the algorithm framework proposed are satisfactory. In summary, using deep learning methods to complete the tasks of building group division and building group pattern recognition is potentially effective, and the algorithm framework is worth further research.

4.
PLoS One ; 10(12): e0145312, 2015.
Article in English | MEDLINE | ID: mdl-26710255

ABSTRACT

The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.


Subject(s)
Geographic Information Systems , Geographic Mapping , Geology/methods , Information Dissemination/methods , Information Storage and Retrieval/methods , Electronic Data Processing , Geography/methods , Internet , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL