Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 34(1): 569-578, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37548692

ABSTRACT

OBJECTIVE: Microwave ablation (MWA) has emerged as a minimally invasive technology for papillary thyroid microcarcinoma (PTMC), but it has not been widely applied to treat T1bN0M0 PTC with high-level evidence. This study was designed to compare the real-world efficacy and safety of MWA or surgery for treating T1bN0M0 PTC. METHODS: From December 2019 to April 2021, 123 continuous unifocal T1bN0M0 PTC patients without lymph node metastasis (LNM) or distant metastasis (DM) were included from 10 hospitals. Patients were allocated into the MWA or surgery group based on their willingness. The main outcomes were local tumour progression (LTP), new thyroid cancer, LNM, and DM. The secondary outcomes included changes in tumour size and volume, complications, and cosmetic results. Subgroup analyses were conducted to identify influencing factors. RESULTS: Fifty-two patients chose MWA, and 71 patients chose surgery. Patients had similar demographic information and tumour characteristics in the two groups. The follow-up durations after MWA and surgery were 10.6 ± 4.2 and 10.4 ± 3.4 months, respectively. The LNM rate was 5.8% in the MWA group and 1.4% in the surgery group (p = 0.177). No LTP, new thyroid cancer, or distant metastasis (DM) occurred in either group. Five (9.6%) of the 52 patients in the MWA group and 8 (11.3%) of the 71 patients in the surgery group had complications (p = 0.27). Better cosmetic results were found in the MWA group (p < 0.01). CONCLUSION: MWA achieved comparable short-term treatment efficacy with surgery. MWA might be an optional choice for surgery for low-risk T1bN0M0 PTC but concerns about LNM need to be studied further. CLINICAL RELEVANCE STATEMENT: MWA achieved comparable short-time treatment efficacy with surgery. MWA might be an optional choice for surgery for low-risk T1bN0M0 PTC. KEY POINTS: • MWA achieved comparable short-term treatment efficacy with surgery. MWA might be an optional choice for surgery for low-risk T1bN0M0 PTC but concerns about LNM need to be studied further. • The complication rate in the surgery group was higher than that in the MWA group without a significant difference. • There was no statistically significant difference in the LNM rate between the MWA and surgery groups.


Subject(s)
Microwaves , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/surgery , Thyroid Cancer, Papillary/pathology , Microwaves/therapeutic use , Prospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Lymphatic Metastasis , Ultrasonography, Interventional , Retrospective Studies
2.
ACS Nano ; 13(12): 14399-14407, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31825592

ABSTRACT

Compared to lithium-oxygen batteries, sodium-oxygen (Na-O2) batteries exhibit a number of advantages: extremely low cost, low charging overpotential, and stability under nitrogen. However, accumulation of insoluble discharge products and failure of catalysts often result in poor performance of Na-O2 batteries and limit their cycling life. In this work, electrochemical reactions of Na-O2 batteries were directly investigated in situ by assembling a solid-state Na-O2 nanobattery in an aberration-corrected environmental transmission electron microscope. During discharge, NaO2 hollow spheres formed and expanded continuously, accompanying their partial decomposition into Na2O2. These spheres shrank and collapsed into Na2O2 nanoparticles during the charging process. Carbon nanotubes doped with Pt and bimetallic Pt/Ir nanoscale catalyst can promote product formation and reversible evolution. In-depth investigation of the electrochemical reaction mechanism in Na-O2 cells helps to accelerate the development of metal-air devices.

3.
ACS Appl Mater Interfaces ; 11(23): 20762-20769, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31157525

ABSTRACT

A two-dimensional (2D) layer-structured material is often a high-capacity ionic storage material with fast ionic transport within the layers. This appears to be the case for nonconversion layer structure, such as graphite. However, this is not the case for conversion-type layered structure such as transition-metal sulfide, in which localized congestion of ionic species adjacent to the surface will induce localized conversion, leading to the blocking of the fast diffusion channels and fast capacity fading, which therefore constitutes one of the critical barriers for the application of transition-metal sulfide layered structure. In this work, we report the tackling of this critical barrier through nanoscale engineering. We discover that interconnected vertically stacked two-dimensional-molybdenum disulfide can dramatically enhance the cycling stability. Atomic-level in situ transmission electron microscopy observation reveals that the molybdenum disulfide (MoS2) nanocakes assembled with tangling {100}-terminated nanosheets offer abundant open channels for Li+ insertion through the {100} surface, featuring an exceptional cyclability performance for over 200 cycles with a capacity retention of 90%. In contrast, (002)-terminated MoS2 nanoflowers only retain 10% of original capacity after 50 cycles. The present work demonstrates a general principle and opens a new route of crystallographic design to enhance electrochemical performance for assembling 2D materials for energy storage.

4.
ACS Appl Mater Interfaces ; 11(19): 17313-17320, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31002223

ABSTRACT

Through in situ transmission electron microscopy (TEM) observation, we report the behaviors of phosphorus (P)-doped silicon nanowires (SiNWs) during electrochemical lithiation/delithiation cycling. Upon lithiation, lithium (Li) insertion causes volume expansion and formation of the crystalline Li15Si4 phase in the P-doped SiNWs. During delithiation, vacancies induced by Li extraction aggregate gradually, leading to the generation of nanopores. The as-formed nanopores can get annihilated with Li reinsertion during the following electrochemical cycle. As demonstrated by our phase-field simulations, such first-time-observed reversible nanopore formation can be attributed to the promoted lithiation/delithiation rate by the P dopant in the SiNWs. Our phase-field simulations further reveal that the delithiation-induced nanoporous structures can be controlled by tuning the electrochemical reaction rate in the SiNWs. The findings of this study shed light on the rational design of high-power performance Si-based anodes.

5.
ACS Appl Mater Interfaces ; 10(48): 41458-41464, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30403477

ABSTRACT

Metal sulfide materials such as CuS, SnS2, Co9S8, and MoS2 are high-capacity anode materials for Li-ion batteries with high capacity. However, these materials go through a conversion reaction with Li+, which is accompanied by inevitably huge volume expansions, thereby causing performance degradation. Here, we report a nanoscale engineering route to efficiently control the overall volume expansion for enhanced performance. We engineered CuS with nanoplate assembly on a nanostring, leading to a nanostructure mimicking the crassula baby necklace (CBN) in the natural plant. Using in situ transmission electron microscopy, we probed the lithiation kinetics and dynamic structural transformations. Due to the linkage of the central nanostring, the CuS CBN exhibited a fast Li+ diffusion along the axial direction and high mechanical stability during lithiation. The volume expansion was minimal for our CuS CBN due to the pre-engineered gap and pores between these plates. The CuS followed a two-step lithiation process, with Cu2S and Li2S formation as the first step and Cu extrusion in the later stage. Interestingly, during the Cu2S-to-Cu conversion, we observed an incubation period before the metallic Cu extrusion, which is featured by the formation of an amorphous structure due to the large lattice strain and distortion associated with the displacement of Cu by Li ions. In the final stage, the lithiated amorphous phase recrystallized to a composite of Cu nanocrystals in a polycrystalline Li2S matrix. Associated with the nanoscale size, the Cu nanocrystals can reversibly dissolve into the matrix upon delithiation. The present work demonstrates tailoring of desired functionality in electrodes using bionic engineering methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...