Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 345: 123427, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38286262

ABSTRACT

The escalating presence of antibiotic-resistant bacteria (ARB) in aquatic ecosystems underscores the critical role of wastewater treatment plants (WWTPs) in mitigating antibiotic resistance. Disinfection is the final, pivotal step in WWTPs, and it is essential to control the dissemination of ARB before water discharge. This study utilized both phenotypic analysis and transcriptome (RNA-seq) approach to investigate the efficiency and mechanisms of disinfection using chlorination, ultraviolet (UV), and peracetic acid (PAA) on multidrug-resistant bacteria (MRB). Our results demonstrated that the use of 100 mg min L-1 of chlorine, 8.19 mJ cm-2 of UV irradiation or 50 min mg L-1 of PAA significantly reduced the abundance of MRB. Intriguingly, RNA-seq clarified distinct mechanisms of chlorination and UV disinfection. UV radiation triggered the SOS response to cope with DNA damage, induced the expression of multi-drug resistance genes by increasing the expression of efflux pump transporters. UV radiation also promoted the absorption of iron through chelation and transportation to participate in various cell life processes. Chlorination, on the other hand, significantly up-regulated osmotic response elements, including the synthesis of glycine betaine, iron-sulfur clusters, and related transporters. Both chlorination and UV significantly down-regulated key metabolic pathways (P < 0.05), inhibiting the process of amino acid synthesis and energy metabolism. Imbalance in energy homeostasis was the most important factor leading to cytotoxicity. These results provide useful insights into optimizing the wastewater disinfection process in order to prevent the dissemination of ARB in aquatic environment.


Subject(s)
Wastewater , Water Purification , Disinfection/methods , Ecosystem , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Peracetic Acid , Ultraviolet Rays , Bacteria , Iron , Water Purification/methods , Anti-Bacterial Agents/pharmacology
2.
Sci Total Environ ; 862: 160870, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36521619

ABSTRACT

Variations in the distribution, source composition, mass inventory and burial flux of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Pearl River Estuary (PRE) collected in 2011 and 2019 were analyzed to investigate the influence of the anthropogenic activities. Total concentrations of 16 priority PAHs in 2019 (200.40 ± 188.86 ng g-1 dry weight on average) were at the medium level among global bays/estuaries/coastal areas. In 2019, PAH concentrations have decreased by about 50% compared to 2011 and the dominant composition has changed from low- to high-molecular-weight PAHs. The qualitative and quantitative source apportionment analysis indicates that the dominant source of PAHs has shifted from petroleum (40.33%) in 2011 to traffic emission (44.17%) in 2019. The source variation in the PRE can be attributed to the transformation of the energy source structure from petrogenic to pyrogenic in the Pearl River Delta. The estimated PAH mass inventory of the top 5-cm sediment was 38.70 metric tons in 2019, which was about 41 metric tons lower than that in 2011. The average deposition fluxes have dropped from 418.91 ± 261.02 ng cm-2 yr-1 in 2011 to 215.52 ± 246.63 ng cm-2 yr-1 in 2019. The decreasing PAH concentration is related to the sediment coarsening and decline of total organic carbon. These findings in the PRE can be applied to other estuarine environments influenced by anthropogenic activities.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Rivers/chemistry , Estuaries , Anthropogenic Effects , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring , China
3.
Mar Pollut Bull ; 168: 112376, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33975159

ABSTRACT

Marine fishes are consumed in large quantities by humans as nutritious food. However, the intake of fish polluted by chemicals may pose a severe threat to human health. This study measured the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in the muscles of 22 species of marine fish from two coastal regions, i.e., Tanmen and Zhuhai, identified the source of PAHs, and assessed the human health risk by dietary exposure. Total PAH (Σ16PAHs) levels in Tanmen and Zhuhai fish were in the range of 24.29-684.83 ng g-1 dry weight (dw) and 13.74-42.59 ng g-1 dw, averaging 161.46 ng g-1 dw and 31.21 ng g-1 dw, respectively. Compared with other regions in the world, PAH concentrations in Tanmen fish were at median levels, and Zhuhai fish were at low levels. Low molecular weight PAHs (with 2- and 3-rings) were the predominant compounds detected. Molecular diagnostic ratios suggested that PAHs in Tanmen mainly originated from petrogenic sources such as vessel operations or tanker accidents, while Zhuhai fish were mainly polluted by pyrolytic sources such as combustion of coal and wood. The human health risk assessment results indicated that the risk of PAH intake via fish consumption from Zhuhai was negligible, while five species from Tanmen may pose potential health risks to local residents.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , China , Environmental Monitoring , Fishes , Geologic Sediments , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...