Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 261(Pt 1): 129669, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272424

ABSTRACT

Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.


Subject(s)
Apoptosis , Biological Products , Humans , Apoptosis/physiology , Cell Death , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Signal Transduction , Biological Products/pharmacology
2.
Inflamm Bowel Dis ; 29(9): 1446-1457, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37000707

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease generally limited to the mucosa and submucosa of the colon. Recent studies suggest that ferroptosis is a novel programmed cell death that may be involved in the process of UC. However, the mechanism of ferroptosis in UC remains to be further investigated. METHODS: The genes associated with UC and ferroptosis were screened by bioinformatics methods, and a random forest model was constructed to identify the core genes of UC and validated with external data sets. Establishment of dextran sodium sulfate (DSS) induced UC in an animal model in vivo. Interferon (IFN)-γ primed immortalized bone marrow-derived macrophages cells stimulated with Lipopolysaccharides (LPS) inflammation model and LPS-stimulated Caco-2 cells colitis model in vitro were constructed. The potential link between Lipocalin-2 (LCN2) and UC ferroptosis was explored by flow cytometry, Fe2+ assay, Western Blot, gene knockdown, hematoxylin and eosin staining, and immunohistochemistry staining. RESULTS: Analysis of differentially expressed genes (DEGs) showed that LCN2 was highly expressed in UC. The protein-protein interaction (PPI) networks showed that ferroptosis-associated DEGs were highly correlated with the immune gene LCN2. The most important gene in the random forest model, LCN2, was identified as a core gene in UC. In the LPS/IFN-γ-induced inflammation model, LCN2 expression was elevated, lipid peroxidation, Fe2+, ACSL4 and COX-2 levels increased, whereas GPX4 and FTH1 expression decreased. Similarly, in the DSS-induced UC mouse model, Occludin, ZO-1, Claudin-1, and GPX4 expression were significantly decreased, but ACSL4 and LCN2 expression were elevated. In addition, the use of Ferrostatin-1 (Fer-1) can significantly reverse its trend. More importantly, silencing of LCN2 suppressed ferroptosis events in both the LPS/IFN-γ-induced inflammation model and the LPS-stimulated colitis model. CONCLUSION: In conclusion, our study demonstrates that LCN2 is a key factor in the regulation of ferroptosis in UC and provides additional evidence for the important role of ferroptosis in UC.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Lipocalin-2 , Animals , Humans , Mice , Caco-2 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Ferroptosis/genetics , Lipocalin-2/genetics , Lipopolysaccharides
3.
Life Sci ; 313: 121272, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36509196

ABSTRACT

AIMS: To investigate the role of ferroptosis-related genes in the induction into ulcerative colitis (UC) and provide new strategies for the prevention and treatment of UC. MATERIALS AND METHODS: We screened the UC dataset from the GEO database and obtained ferroptosis-related genes from FerrDB and GeneCards. The R package "CancerSubtypes" was performed to identify the UC subtypes, followed by Short Time-series Expression Miner (STEM) analysis. The key genes were further screened by machine learning algorithms (LASSO and SVM-RFE). WB and IHC verified the changes in the expression content of ACSF2 in vivo and in vitro models. The changes in intracellular ROS and Fe2 + levels were detected. KEY FINDINGS: Through bioinformatics analysis, we selected the ferroptosis-related gene ACSF2 (acyl CoA synthetase family member 2), which is significantly associated with immune-related pathways "Toll-like receptor signaling pathway", "NF-kappa B signaling pathway" and "NOD-like receptor signaling pathway". The expression of ACSF2 was significantly down-regulated in UC animals, Salmonella typhimurium colitis models and cell models, while the ferroptosis inhibitor Fer-1 reversed the expression of ACSF2 in LPS-induced cell models, indicating that the ferroptosis-related gene ACSF2 plays an important role in mediating ferroptosis and inflammation, and is expected to become a new target for further research. SIGNIFICANCE: Ferroptosis is closely associated with the development of UC, and the ferroptosis-related gene ACSF2 can be used as a potential biomarker for the diagnosis and treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Ferroptosis , Animals , Colitis, Ulcerative/genetics , Ferroptosis/genetics , Inflammation , Algorithms
4.
Inflamm Res ; 72(2): 281-299, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36536250

ABSTRACT

INTRODUCTION: Inflammation is a defensive response of the organism to irritation which is manifested by redness, swelling, heat, pain and dysfunction. The inflammatory response underlies the role of various diseases. Ferroptosis, a unique modality of cell death, driven by iron-dependent lipid peroxidation, is regulated by multifarious cellular metabolic pathways, including redox homeostasis, iron processing and metabolism of lipids, as well as various signaling pathways associated with diseases. A growing body of evidence suggests that ferroptosis is involved in inflammatory response, and targeting ferroptosis has great prospects in preventing and treating inflammatory diseases. MATERIALS AND METHODS: Relevant literatures on ferroptosis, inflammation, inflammatory factors and inflammatory diseases published from January 1, 2010 to now were searched in PubMed database. CONCLUSION: In this review, we summarize the regulatory mechanisms associated with ferroptosis, discuss the interaction between ferroptosis and inflammation, the role of mitochondria in inflammatory ferroptosis, and the role of targeting ferroptosis in inflammatory diseases. As more and more studies have confirmed the relationship between ferroptosis and inflammation in a wide range of organ damage and degeneration, drug induction and inhibition of ferroptosis has great potential in the treatment of immune and inflammatory diseases.


Subject(s)
Ferroptosis , Humans , Inflammation , Cell Death , Homeostasis , Iron , Lipid Peroxidation
SELECTION OF CITATIONS
SEARCH DETAIL
...