Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1335831, 2024.
Article in English | MEDLINE | ID: mdl-38562487

ABSTRACT

Background: Despite the rapid increase in the global prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), there are no approved therapeutic drugs for MAFLD yet. Nutrient supplementation might mitigate the risk of MAFLD. It is more typical for individuals to consume multiple nutrients simultaneously. However, the studies exploring the combined effects of multiple nutrients on MAFLD are limited. This study aimed to investigate the relationship between both individual nutrients and their combined influence on the risk of MAFLD. Methods: Data were obtained from National Health and Nutrition Examination Survey (NHANES), and 18 types of nutrients were considered in this study. Logistic regression analysis was performed to evaluate the correlation between single nutrients and the risk of MAFLD. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to pinpoint the most relevant nutrient associated with the risk of MAFLD. Subsequently, both Weighted Quantile Sum (WQS) regression and Quantile g-computation (Qgcomp) were used to assess the combined effects of multiple nutrients on the risk of MAFLD. Results: A total of 3,069 participants were included in this study. LASSO regression analysis showed that Se, α-tocopherol, and γ-tocopherol exhibited a positive association with the risk of MAFLD. In contrast, the serum levels of Co, P, α-cryptoxanthin, LZ, and trans-ß-carotene were inversely associated with the prevalence of MAFLD. When Se and two types of vitamin E were excluded, the WQS index showed a significant inverse relationship between the remaining 15 nutrients and the risk of MAFLD; α-cryptoxanthin showed the most substantial contribution. Similarly, Qgcomp suggested that the combined effects of these 15 nutrients were associated with a lower risk of MAFLD, with α-cryptoxanthin possessing the most significant negative weights. Conclusion: This study suggested that the complex nutrients with either a low proportion of Se, α-tocopherol, and γ-tocopherol or without them should be recommended for patients with MAFLD to reduce its risk.

2.
Ecotoxicol Environ Saf ; 268: 115687, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976926

ABSTRACT

Accumulation of the heavy metal Cadmium (Cd) in the ovaries and placenta can affect the structure and function of these organs and induce female reproductive toxicity. This toxicity may be due to Cd's similarity to estrogen and its ability to disrupt endocrine systems. However, the exact molecular mechanism by which Cd causes reproductive toxicity at the transcriptome level remains poorly understood. Hence, this study aimed to observe Cd-induced reproductive damage at the gene level, scrutinize the repercussions of Cd exposure on oogenesis, and explicate the putative pathogenesis of Cd-induced oogenesis based on Caenorhabditis elegans (C. elegans) as an in vivo model. The results showed that Cd exposure significantly decreased the number of offspring and prolonged the reproductive span of C. elegans. Cd exposure also reduced the number of cells in mitosis and the pachytene and diakinesis stages of meiosis, thereby disrupting oogenesis. Combined with transcriptional sequencing and bioinformatics analysis, a total of 3167 DEmRNAs were identified. Regarding gene expression, cul-6, mum-2, and vang-1 were found to be related to Cd-induced reproductive toxicity, and their competing endogenous RNA networks were constructed. We observed that mutations of mom-2 and vang-1 in the Wnt pathway could induce susceptibility to Cd-caused meiosis injury. In conclusion, the results indicated that Cd could impair the oogenesis of C. elegans and the Wnt pathway might serve as a protective mechanism against Cd reproductive toxicity. These findings contribute to a better understanding of the damaging effects and molecular biological mechanisms of Cd on the human reproductive system.


Subject(s)
Caenorhabditis elegans Proteins , Metals, Heavy , Animals , Female , Humans , Caenorhabditis elegans , Cadmium/metabolism , RNA/metabolism , Oogenesis/genetics , Metals, Heavy/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
3.
Front Public Health ; 11: 1103289, 2023.
Article in English | MEDLINE | ID: mdl-37275491

ABSTRACT

Micro/nano-plastics (MNPs) are considered a heterogeneous class of environmental contaminants that cause multiple toxic effects on biological species. As the commonly used mammalian models to study the effects of MNPs with regard to their toxic effects, the mouse and rat models are making a great contribution to the disciplines of environmental toxicology and medical health. However, the toxic effects of MNPs have not been systematically summarized. Therefore, a systematic review and a meta-analysis of the toxic effects of MNPs on mouse/rat models were conducted. A total of seven main categories were established in this systematic review, and 24 subcategories were further divided according to the specific physiological significance of the endpoint or the classification of the physiological system, which covered all the selected pieces of literature. A total of 1,762 biological endpoints were found, and 52.78% of them were significantly affected. This fact indicates that there are relative factors, including the size, polymer type, concentration, and exposure time of MNPs and different sexes of mouse/rat models that could significantly affect the biological endpoints. These biological endpoints can be classified into various factors, such as the dose-response relationships between MNP concentration and physiological categories of the nervous system, growth, reproduction, digestive tract histopathology, and inflammatory cytokine level, among others. MNPs negatively affected the blood glucose metabolism, lipid metabolism, and reproductive function in mice. The reproductive function in male mice is more sensitive to the toxic effects of MNPs. These findings also provide insights into and directions for exploring the evidence and mechanisms of the toxic effects of MNPs on human health. It is clear that more research is required on the pathological mechanisms at the molecular level and the long-term effects of tissue accumulation.


Subject(s)
Microplastics , Plastics , Rats , Mice , Male , Humans , Animals , Microplastics/analysis , Mammals
4.
Nutrients ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839265

ABSTRACT

Naringin (Nar) is a dihydroflavonoid compound, widely found in citrus fruit and used in Chinese herbal medicine. As a phytochemical, it acts as a dietary supplement that can delay aging and prevent aging-related disease, such as obesity and diabetes. However, its exact mechanism remains unclear. In this study, the high-glucose-induced (HGI) Caenorhabditis elegans model was used to evaluate the anti-aging and anti-obesity effects of Nar. The mean lifespan and fast movement span of HGI worms were extended roughly 24% and 11%, respectively, by Nar treatment. Oil red O staining revealed a significant reduction in fat accumulation and dFP::LGG-labeled worms showed the promotion of autophagy. Additionally, whole transcriptome sequencing and gene set variation analysis suggested that Nar upregulated the lipid biosynthesis and metabolism pathways, as well as the TGF-ß, Wnt and longevity signaling pathways. Protein-protein interaction (PPI) network analysis identified hub genes in these pathways for further analysis. Mutant worms and RNA interference were used to study mechanisms; the suppression of hlh-30, lgg-1, unc-51, pha-4, skn-1 and yap-1 disabled the fat-lowering, lifespan-prolonging, and health-promoting properties of Nar. Collectively, our findings indicate that Nar plays an important role in alleviating HGI-aging and anti-obesity effects by reducing fat accumulation and promoting autophagy.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/metabolism , Glucose/metabolism , Aging/genetics , Longevity , Autophagy/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , YAP-Signaling Proteins
5.
Front Public Health ; 10: 941922, 2022.
Article in English | MEDLINE | ID: mdl-36159247

ABSTRACT

Lead (Pb) and cadmium (Cd) in environment can be directly absorbed by drinking water and soil. However, data on human Pb and Cd exposure by drinking water and soil and its long-term consequence for type 2 diabetes mellitus (T2DM) and obesity are lacking. Our study aims to explore the association of typical heavy metals co-exposure in drinking water and soil to the community residents with T2DM and obesity indices in two cities of southern China. A cross-sectional study enrolling total 1,274 participants was performed and the local water and soil samples were collected in two communities in southern China. The average daily dose (ADD) of heavy metals was calculated to assess the exposure. The obesity indices comprise body mass index (BMI), waist-to-hip ratio (WHR) and waist circumference (WC). Binary, multiple logistic and linear regressions were employed for assessing the associations of Pb and Cd exposure with T2DM and obesity. The results showed that there weren't any significant correlations between ADDs of Pb/Cd and T2DM in community residents (all Ps>0.05). Compared with those with 18.5 ≤ BMI <24, with 1 µg/kg bw/d ADD of Pb increase in exposure are associated with 49.2-56.1% lower likelihood of overweight. Besides, with ADDs of Pb exposure was increased by 1 µg/kg bw/d and WHR decreasing by 0.01-0.02, and WC decreasing by 2.22-4.67 cm. We speculate that Pb causes weight loss because it damages the absorption function of the gastrointestinal tract as an initial injury. 1µg/kg bw/d ADD of Cd increase is associated with 100.9% upper likelihood of low weight in Model 1. It suggests that Pb/Cd pollution in the local environment was serious and harmful to residents' health. Government should introduce relevant oversight and accountability systems to improve the prevention and management of lifestyle-related chronic diseases in the future.


Subject(s)
Diabetes Mellitus, Type 2 , Drinking Water , Metals, Heavy , Cadmium/analysis , China/epidemiology , Cross-Sectional Studies , Diabetes Mellitus, Type 2/epidemiology , Humans , Lead , Metals, Heavy/analysis , Obesity/epidemiology , Soil
6.
Cancer Cell Int ; 22(1): 141, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35361205

ABSTRACT

Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.

7.
Front Bioeng Biotechnol ; 9: 635768, 2021.
Article in English | MEDLINE | ID: mdl-34327192

ABSTRACT

Micronutrients extracted from natural plants or made by biological synthesis are widely used in anti-aging research and applications. Among more than 30 effective anti-aging substances, employing polyphenol organic compounds for modification or delaying of the aging process attracts great interest because of their distinct contribution in the prevention of degenerative diseases, such as cardiovascular disease and cancer. There is a profound potential for polyphenol extracts in the research of aging and the related diseases of the elderly. Previous studies have mainly focused on the properties of polyphenols implicated in free radical scavenging; however, the anti-oxidant effect cannot fully elaborate its biological functions, such as neuroprotection, Aß protein production, ion channel coupling, and signal transduction pathways. Caenorhabditis elegans (C. elegans) has been considered as an ideal model organism for exploring the mechanism of anti-aging research and is broadly utilized in screening for natural bioactive substances. In this review, we have described the molecular mechanisms and pathways responsible for the slowdown of aging processes exerted by polyphenols. We also have discussed the possible mechanisms for their anti-oxidant and anti-aging properties in C. elegans from the perspective of different classifications of the specific polyphenols, such as flavonols, anthocyanins, flavan-3-ols, hydroxybenzoic acid, hydroxycinnamic acid, and stilbenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...