Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 45(12): 2450-2458, 2024 May.
Article in English | MEDLINE | ID: mdl-36730286

ABSTRACT

A whole-year investigation of full-scale integrated subsurface-constructed wetlands (ISCWs) was carried out to purify the tail water from a wastewater treatment plant (WWTP) for wastewater reclamation under four plant species, four hydraulic loading rates (HLRs), and four seasons. The results showed that ISCWs were effective for the purification of WWTP discharge, with the average removal efficiencies of COD, NH4+-N, TN, and TP being 48%, 49%, 9%, and 30%, respectively. Typical pollutant concentrations in the treated effluent of ISCWs were 8.19 mg/L COD, 1.76 mg/L NH4+-N, 11.57 mg/L TN, and 0.36 mg/L TP, which met most of the water quality standards for reusing recycling water. Emergent plants with well-developed root systems may be capable of promoting the decontamination of ISCWs. Seasonal change played an important role in the treatment process: the removal of phosphorus by plant uptake and microbial utilization was more active in the warm season and the co-occurrence of organic degradation and nitrification, whereas the cold season is conducive to exothermic adsorption process of pollutants to substrates. Properly increasing the HLRs may improve the availability of ISCWs according to the requirement of effluent quality. Furthermore, the C/N ratio might be the key factor for the purification effect of ISCWs, because the COD level of WWTP discharge may change the process of NH4+-N biotransformation.


Subject(s)
Environmental Pollutants , Water Purification , Wastewater , Wetlands , Waste Disposal, Fluid/methods , Nitrogen/analysis , Water Purification/methods , Phosphorus
2.
Environ Sci Pollut Res Int ; 30(11): 31256-31267, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36445519

ABSTRACT

Three full-scale constructed wetlands (CWs), namely vertical flow (VFCW), surface flow (SFCW), and horizontal flow (HFCW) systems, were combined in a series process to form a hybrid CW, which was used for the treatment performance of domestic-industrial mixed wastewater and investigated over a three-year period. The hybrid CW demonstrated that it is effective and stable during the long-term treatment of high-loading mixed wastewater under different operation years, season changes, and technology processes, with the average removal efficiencies of suspended solids, chemical oxygen demand, biological oxygen demand, total nitrogen, ammonia nitrogen, nitrate nitrogen, and total phosphorous being 84, 40, 54, 54, 70, 40, and 46%, respectively. The effluent quality of the hybrid CW reached the highest discharge standard for wastewater treatment plants. First, a variety of pollutants from the mixed wastewater were effectively removed in the subsurface processes (VFCW and HFCW) via substrate adsorption and degradation of the attached biofilm. The higher dissolved oxygen content and oxygen transfer capacity values in the VFCW were favourable for the occurrence of aerobic pathways (such as nitrification and inorganic phosphorus oxidation). In addition, with the large consumption of oxygen in the previous process, the oxygen-enriching capacity of the SFCW processes, provided aerobic potential for the next stage. In particular, the plant debris in the SFCW temporarily increased the organics and suspended solids, further increasing the C/N ratio, which was beneficial for denitrification as the main nitrogen removal pathway in the HFCW.


Subject(s)
Waste Disposal, Fluid , Wastewater , Wetlands , Nitrogen/analysis , Oxygen , Denitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...