Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4714, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830893

ABSTRACT

There is growing consensus that gas-fired generators will play a crucial role during the transition to net-zero energy systems, both as an alternative to coal-fired generators and as a flexibility service provider for power systems. However, malfunctions of gas networks have caused several large-scale power blackouts. The transition from coal and oil to gas fuels significantly increases the interdependence between gas networks and electric power systems, raising the risks of more frequent and widespread power blackouts due to the malfunction of gas networks. In a coupled gas-electricity system, the identification and transmission of gas network malfunction information, followed by the redispatch of electric power generation, occur notably faster than the propagation and escalation of the malfunction itself, e.g., significantly diminished pressure. On this basis, we propose a gas-electric early warning system that can reduce the negative impacts of gas network malfunctions on the power system. A proactive control strategy of the power system is also formulated based on the early warning indicators. The effectiveness of this method is demonstrated via case studies of a real coupled gas-electricity system in China.

2.
IEEE Trans Neural Netw Learn Syst ; 32(5): 1866-1880, 2021 05.
Article in English | MEDLINE | ID: mdl-32497005

ABSTRACT

Nontechnical losses (NTLs) are estimated to be considerable and increasing every year. Recently, high-resolution measurements from globally laid smart meters have brought deeper insights on users' consumption patterns that can be exploited potentially by NTL detection. However, consumption-pattern-based NTL detection is now facing two major challenges: the inefficiency of harnessing high dimensionality and the severe lack of fraudulent samples. To overcome them, an NTL detection model based on deep learning and anomaly detection is proposed in this article, namely bidirectional Wasserstein GAN and support vector data description-based NTL detector (BSBND). Motivated by the powerful ability of generative adversarial networks (GANs) to learn deep representation from high-dimensional distributions of data, in the BSBND, we utilized a BiWGAN for feature extraction from high-dimensional raw consumption records, and a one-class classifier trained only on benign samples-SVDD-is adopted to map features into judgments. Moreover, a novel alternate coordinating algorithm is proposed to optimize the cooperation between the upstream BiWGAN and the downstream SVDD, and also, an interpreting algorithm is proposed to visualize the basis of each fraudulent judgment. Case studies have demonstrated the superiority of the BSBND over the state of the arts, the powerful feature extraction ability of BiWGAN, and also the effectiveness of the proposed coordinating and interpreting algorithms.

3.
IEEE Trans Neural Netw Learn Syst ; 31(2): 612-625, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31056521

ABSTRACT

Probability density forecast offers the whole distributions of forecasting targets, which brings greater flexibility and practicability than the other probabilistic forecast models such as prediction interval (PI) and quantile forecast. However, existing density forecast models have introduced various constraints on forecasted distributions, which has limited their ability to approximate real distributions and may result in suboptimality. In this paper, a distribution-free density forecast model based on deep learning is proposed, in which the real cumulative density functions (CDFs) of forecasting target are approximated by a large-capacity positive-weighted deep neural network (NN). Benefiting from the universal approximation ability of NNs, the range of forecasted distributions has been proven to contain all the distributions with continuous CDFs, which is superior to existing models' considering both width and accordance with reality. Three tests from different scenarios were implemented for evaluation, i.e., very-short-term wind power, wind speed, and day-ahead electricity price forecast, in which the proposed density forecast model has shown superior performance over the state of the art.

4.
IEEE Trans Neural Netw Learn Syst ; 30(11): 3287-3299, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30714931

ABSTRACT

As nontechnical losses in power systems have recently become a global concern, electricity fraud detection models attracted increasing academic interest. The wide application of smart meters has offered more possibility to detecting fraud from user's consumption patterns. However, the performances of existing consumption-based electricity fraud detection models are still not satisfactory enough for practice, partly due to their limited ability to handle high-dimensional data. In this paper, a deep-learning-based model is developed for detecting electricity fraud in the advanced metering infrastructure, namely, the multitask feature extracting fraud detector (MFEFD). The deep architecture has brought MFEFD a powerful ability to handle high-dimensional input, through which consumption patterns inside load profiles can be effectively extracted. Another challenge is that the insufficiency of labeled data has restricted the generalization of existing models since they are mostly based on supervised learning and labeled data. MFEFD is trained in a semisupervised manner, in which multitask training was implemented to combine the supervised and unsupervised training, so that both the knowledge from unlabeled and labeled data can be made use of. Real-world-data-based case studies have demonstrated MFEFD's high detection performance, robustness, privacy preservation, and practicability.

5.
IEEE Trans Neural Netw Learn Syst ; 27(8): 1708-19, 2016 08.
Article in English | MEDLINE | ID: mdl-25680217

ABSTRACT

Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...