Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37895542

ABSTRACT

The integration of information from multiple modalities is a highly active area of research. Previous techniques have predominantly focused on fusing shallow features or high-level representations generated by deep unimodal networks, which only capture a subset of the hierarchical relationships across modalities. However, previous methods are often limited to exploiting the fine-grained statistical features inherent in multimodal data. This paper proposes an approach that densely integrates representations by computing image features' means and standard deviations. The global statistics of features afford a holistic perspective, capturing the overarching distribution and trends inherent in the data, thereby facilitating enhanced comprehension and characterization of multimodal data. We also leverage a Transformer-based fusion encoder to effectively capture global variations in multimodal features. To further enhance the learning process, we incorporate a contrastive loss function that encourages the discovery of shared information across different modalities. To validate the effectiveness of our approach, we conduct experiments on three widely used multimodal sentiment analysis datasets. The results demonstrate the efficacy of our proposed method, achieving significant performance improvements compared to existing approaches.

2.
Entropy (Basel) ; 25(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37895593

ABSTRACT

Link prediction remains paramount in knowledge graph embedding (KGE), aiming to discern obscured or non-manifest relationships within a given knowledge graph (KG). Despite the critical nature of this endeavor, contemporary methodologies grapple with notable constraints, predominantly in terms of computational overhead and the intricacy of encapsulating multifaceted relationships. This paper introduces a sophisticated approach that amalgamates convolutional operators with pertinent graph structural information. By meticulously integrating information pertinent to entities and their immediate relational neighbors, we enhance the performance of the convolutional model, culminating in an averaged embedding ensuing from the convolution across entities and their proximal nodes. Significantly, our methodology presents a distinctive avenue, facilitating the inclusion of edge-specific data into the convolutional model's input, thus endowing users with the latitude to calibrate the model's architecture and parameters congruent with their specific dataset. Empirical evaluations underscore the ascendancy of our proposition over extant convolution-based link prediction benchmarks, particularly evident across the FB15k, WN18, and YAGO3-10 datasets. The primary objective of this research lies in forging KGE link prediction methodologies imbued with heightened efficiency and adeptness, thereby addressing salient challenges inherent to real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...