Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
PLoS One ; 19(4): e0302361, 2024.
Article in English | MEDLINE | ID: mdl-38687802

ABSTRACT

Growing evidence has increasingly suggested a potential linkage between the oral microbiome and various diseases, including pancreatic ductal adenocarcinoma (PDAC). However, the utilization of gene-level information derived from the oral microbiome for diagnosing PDAC remains unexplored. In this study, we sought to investigate the novel potential of leveraging genomic signatures associated with antibiotic resistance genes (ARGs) within the oral microbiome for the diagnosis of PDAC. By conducting an analysis of oral microbiome samples obtained from PDAC patients, we successfully identified specific ARGs that displayed distinct sequence abundance profiles correlated with the presence of PDAC. In the healthy group, three ARGs were found to be enriched, whereas 21 ARGs were enriched in PDAC patients. Remarkably, these ARGs from oral microbiome exhibited promising diagnostic capabilities for PDAC (AUROC = 0.79), providing a non-invasive and early detection method. Our findings not only provide novel modal data for diagnosing PDAC but also shed light on the intricate interplay between the oral microbiome and PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/diagnosis , Microbiota/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/diagnosis , Female , Male , Mouth/microbiology , Middle Aged , Drug Resistance, Microbial/genetics , Aged , Genomics/methods
2.
Environ Res ; 251(Pt 2): 118663, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460667

ABSTRACT

Although less toxic than hexavalent chromium, Cr (Ⅲ) species still pose a threat to human health. The Cr (Ⅵ) should be converted to Cr (0) instead of Cr (Ⅲ), which is still involved in biological detoxification filed. Herein, for the first time, it was found that Cr(Ⅵ) can be reduced into Cr(0) by Bacillus cereus FNXJ1-2-3, a way to completely harmless treatment of Cr(Ⅵ). The bacterial strain exhibited excellent performance in the reduction, sorption, and accumulation of Cr(Ⅵ) and Cr (Ⅲ). XPS etching characterization inferred that the transformation of Cr(Ⅵ) into Cr(0) followed a reduction pathway of Cr(Ⅵ)→Cr (Ⅲ)→metallic Cr(0), in which at least two secretory chromium reductases (ECrⅥ→Ⅲ and ECrⅢ→0) worked. Under the optimum condition, the yield ratio of Cr(0)/Cr (Ⅲ) reached 33.90%. In addition, the interfacial interactions, ion channels, chromium reductases, and external electron donors also contributed to the Cr(Ⅵ)/Cr(0) transformation. Findings of this study indicate that Bacillus cereus FNXJ1-2-3 is a promising bioremediation agent for Cr(Ⅵ) pollution control.


Subject(s)
Bacillus cereus , Biodegradation, Environmental , Chromium , Bacillus cereus/metabolism , Chromium/metabolism , Adsorption , Water Pollutants, Chemical/metabolism
3.
Environ Technol ; 45(10): 1908-1918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36484541

ABSTRACT

Wastewater with residual streptomycin sulphate usually contains high content of ammonia-nitrogen. However, the biological removal process of ammonia-nitrogen under streptomycin sulphate circumstance was unclear. In this study, short-term and long-term effects of streptomycin sulphate on biological nitrification systems, including AOB, NOB, SAOR, SNOR and SNPR, were evaluated comprehensively. The results indicated IC50 for AOB and NOB were 7.5 and 6.6 mg/L. SAOR and SNPR could be decreased to 3.43 ± 0.52 mg N/(g MLSS·h) and 0.24 ± 0.03 mg N/(g MLSS·h) while the addition of streptomycin sulphate was 10 mg/L. When streptomycin sulphate addition was stopped, nitrification ability recovered slightly, SAOR and SNPR increased to 9.37 ± 0.36 mg N/(g MLSS·h) and 1.66 ± 0.49 mg N/(g MLSS·h), respectively. The protein of EPS increased gradually during the acclimatization process, and the maximal protein value was 68.24 mg/g MLSS on the 100th day, however, no significant change of polysaccharose was observed during the acclimatization process. High abundance of ARGs and intI1 was detected in effluent and sludge of the biological treatment system. The maximal relative abundance of aadA1 in the sludge appeared on the 140th day, and increased by 0.99 orders of magnitude. Biological diversity decreased significantly during the acclimatization process, relative abundance of nitrosomonas was changed from 9.07% to 38.68% on the 61st day, while relative abundance of nitrobacter was changed from 1.30% to 0.64%. It should be noted that relative abundances of nitrosomonas and nitrobacter were reduced to 16.17% and 0.25% on the 140th day. This study would be helpful for nitrogen removal in wastewater with antibiotic.


Subject(s)
Microbiota , Sewage , Wastewater , Anti-Bacterial Agents , Streptomycin/pharmacology , Streptomycin/metabolism , Nitrification , Ammonia/metabolism , Nitrites/metabolism , Bioreactors , Drug Resistance, Microbial , Nitrobacter/metabolism , Nitrogen/metabolism , Oxidation-Reduction
4.
Cell Biol Int ; 48(2): 174-189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37853939

ABSTRACT

Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.


Subject(s)
Alkyl and Aryl Transferases , Carcinoma, Adenoid Cystic , Salivary Gland Neoplasms , rho-Associated Kinases , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Vimentin/metabolism , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/pathology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology , Neoplasm Invasiveness/genetics , Cell Cycle Checkpoints , Signal Transduction , Cell Proliferation , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
5.
Chemosphere ; 350: 141043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154675

ABSTRACT

Fishy odor, as an offensive and unpleasant odor, could occur in drinking water source with poor nutrition, it is usually considered to be associated with odor-producing microalgae. However, the specific relations among fishy odor, fishy odorants and responsible microalgae were not elucidated comprehensively. In this paper, the odor-causing compounds generated from six microalgae with fishy odor characteristic, isolated in drinking water source Tongyu River, were identified simultaneously. The sensory evaluation result indicated that Tongyu River was principally related to fishy odor (odor intensity 6.5-7.6). Correspondingly, seven, nine, seven, six, seven and seven olfactory detection peaks (ODP) were screened by combining data of GC/O/MS and GC/GC/TOFMS in Cyclotella, Cryptomonas ovate, Melosira, Dinobryon sp., Synedra and Ochromonas sp., which were isolated in Tongyu River and cultured in laboratory. Totally twenty odor-causing compounds, including hexanal, 2-hexenal, 3-hexen-1-ol, heptanal, 1-octen-3-one, 2,4-heptadienal, 2-tetradecanone, 3,5-octadien-2-one, octanal, 1-octen-3-ol, 2-octenal, nonanal, 2,4-octadienal, 2-nonenal, decanal, 2,6-nonadienal, 2-decenal, undecanal, 2,4-decadienal and dodecanal, were screened and identified in all isolated microalgae. Additionally, fishy odor intensity for all identified microalgae increased obviously as microalgae cell number increased and microalgae cell ruptured in cultivation cycles through pearson and spearman correlation analysis. For the first time, twenty odor-causing compounds associating with fishy odor were recognized from six isolated microalgae, which would provide more scientific basis and theoretical support for preventing and treating fishy odor episode of drinking water source.


Subject(s)
Diatoms , Drinking Water , Microalgae , Volatile Organic Compounds , Odorants/analysis , Drinking Water/analysis , Smell , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis
6.
Sci Total Environ ; 905: 167044, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709086

ABSTRACT

The ingestion of clams (Meretrix) with microplastics (MP) contamination could pose potential risk to human health. The characteristics and potential risks of MP identified in wild-clam and farm-clam from South Yellow Sea Mudflat were studied comprehensively in this paper. The results indicated that MP were identified in both wild-clam (3.4-21.3 items/individual, 2.11-10.65 items/g) and farm-clam (1.3-20.8 items/individual, 0.62-8.67 items/g) among 21 sampling sites along South Yellow Sea Mudflat. The MP abundance of clams from marine estuarine or coast ports were significantly higher than those from purely marine coast mudflat, implying that environmental habitats played an important role on MP characteristics. MP abundance were significantly and positively related to shell length, shell height, shell width and soft tissue wet weight by Pearson test, suggesting the bigger the shell, there existed more MP abundance. Among MP in wild-clams and farm-clams, fragment, fiber were most abundant MP shapes, most MP's sizes were lower than 0.25 mm, the predominant colors were black, red, blue and transparent, chlorinated polyethylene (CPE) was the major polymer. Additionally, estimated dietary intake (EDI) of MP for adults via consumption of wild-clam and farm-clam were 1123.33 ± 399.97 and 795.07 ± 326.72 items/kg/year, respectively, suggesting EDI values of wild-clams were higher than those of farm-clams, and MP intake via wild-clam consumption were more than that via farm-clam consumption. The polymer risk indexes (PRI) of MP in total tissue and digestive system for wild-clam were 1297.8 ± 92.15 (hazard level: IV ~ V), 1038 ± 69.55 (IV ~ V), respectively, while PRI of MP in total tissue and digestive system for farm-clam were 979.92 ± 75.45 (III ~ IV), 735 ± 47.78 (III ~ IV), respectively, implying that PRI and hazard level of MP from wild-clam were higher than those from farm-clam, and the potential risks would decrease greatly when digestive systems of clams are removed during ingestion.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 905: 166998, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37716685

ABSTRACT

In this study, odor characteristics and phytoplankton composition were systematically investigated in two winter periods in a reservoir with fishy odor in north China. Ten potential fishy odor-producing algae were isolated and odorant-producing potentials were evaluated. Olfactometry profile and odorant composition of water samples were analyzed using GC-Olfactometry combined with GC × GC-TOFMS. The results showed that 2,4-heptadienal and hexanal were major fishy odor contributors. The abundance of Uroglena sp., Synura sp. and Peridinium sp. was negatively correlated with total dissolved organic carbon, ammonia nitrogen, and nitrate, illustrating nutrient level might be major drivers for the succession of fishy odor-producing algae. Dinobryon sp. and Uroglena sp. made the greatest contribution to fishy odor, followed by Peridinium sp., Synura sp., and Ochromonas sp. Fishy odor in 2016 winter and the early of 2017 winter was mainly caused by Dinobryon sp., while Uroglena sp. contributes mostly in March in 2017 winter. This study demonstrates the main odorants and algae causing fishy odor in reservoir, which will provide a scientific basis for the management of seasonal fishy odor problems in water source.


Subject(s)
Ochromonas , Odorants , Water , Temperature , Olfactometry/methods
8.
Mol Breed ; 43(9): 71, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37663546

ABSTRACT

The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01414-z.

9.
Chemosphere ; 324: 138328, 2023 May.
Article in English | MEDLINE | ID: mdl-36889477

ABSTRACT

Disgusting fishy odor could break out inside oligotrophic drinking waterbody in winter with low temperature. Nevertheless, fishy odor-producing algae and corresponding fishy odorants were not very clear, odor contribution of fishy odorant and odor-producing algae to overall odor profile were also not well understood. In this study, the fishy odorants, produced by four algae separated from Yanlong Lake, were identified simultaneously. Odor contribution of identified odorant, separated algae to overall fishy odor profile were both evaluated. The results indicated Yanlong Lake was mainly associated with fishy odor (flavor profile analysis (FPA) intensity: 6), eight, five, five and six fishy odorants were identified and determined in Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, which were separated and cultured from water source. Totally sixteen odorants with concentration range of 90-880 ng/L, including hexanal, heptanal, 2,4-heptadienal, 1-octen-3-one, 1-octen-3-ol, octanal, 2-octenal, 2,4-octadienal, nonanal, 2-nonenal, 2,6-nonadienal, decanal, 2-decenal, 2,4-decadienal, undecanal, 2-tetradecanone, were verified in separated algae and associated with fishy odor. Although more odorants' odor activity value (OAV) were lower than one, approximately 89%, 91%, 87%, 90% of fishy odor intensities could be explained by reconstituting identified odorants for Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, suggesting synergistic effect could exist among identified odorants. By calculating and evaluating total odorant production, total odorant OAV and cell odorant yield of separated algae, odor contribution rank to overall fishy odor should be Cryptomonas ovate (28.19%), Dinobryon sp. (27.05%), Synura uvella (24.27%), Ochromonas sp. (20.49%). This is the first study for identifying fishy odorants from four actually separated odor-producing algae simultaneously, this is also for the first time evaluating and explaining odor contribution of identified odorant, separated algae to overall odor profile comprehensively, this study will supply more understanding for controlling and managing fishy odor in drinking water treatment plant.


Subject(s)
Chrysophyta , Drinking Water , Odorants/analysis , Drinking Water/analysis , Temperature , Cold Temperature
10.
Am J Orthod Dentofacial Orthop ; 164(1): 5-13, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36813651

ABSTRACT

INTRODUCTION: The objective of this study was to evaluate the relationship between maxillary transverse deficiency (MTD) diagnosed by 3 methods and molar angulation measured in 3-dimensions in patients with skeletal Class III malocclusion, which could give reference to the selection of diagnostic methods in MTD patients. METHODS: Cone-beam computed tomography data of 65 patients with skeletal Class III malocclusion (mean age 17.35 ± 4.45 years) were selected and imported into MIMICS software. Transverse deficiencies were evaluated by 3 methods, and molar angulations were measured after reconstructing 3-dimensional planes. Two examiners performed repeated measurements to assess the intraexaminer and interexaminer reliability. Pearson correlation coefficient analyses and linear regressions were performed to determine the relationship between a transverse deficiency and molar angulations. One-way analysis of variance was used to compare the diagnostic results of 3 methods. RESULTS: The novel molar angulation measurement method and 3 MTD diagnostic methods have the interexaminer and intraexaminer intraclass correlation coefficient values >0.6. The transverse deficiency diagnosed by 3 methods was significantly and positively correlated with the sum of molar angulation. There was a statistically significant difference for the transverse deficiencies diagnosed by the 3 methods. The transverse deficiency was significantly higher in Boston University's analysis than in Yonsei's analysis. CONCLUSIONS: Clinicians ought to choose the diagnostic methods properly, considering the feature of the 3 methods and the individual difference of each patient.


Subject(s)
Malocclusion, Angle Class III , Malocclusion , Humans , Child , Adolescent , Young Adult , Adult , Reproducibility of Results , Mandible , Malocclusion, Angle Class III/diagnostic imaging , Molar/diagnostic imaging , Maxilla/diagnostic imaging , Cone-Beam Computed Tomography , Cephalometry/methods
11.
Development ; 150(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36815629

ABSTRACT

Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.


Subject(s)
Muscle Fibers, Skeletal , Satellite Cells, Skeletal Muscle , Mice , Animals , Stem Cells , Homeostasis , Satellite Cells, Skeletal Muscle/metabolism , Muscle, Skeletal , Cell Differentiation , Muscle Development
12.
Microbiol Spectr ; 11(1): e0039022, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625645

ABSTRACT

Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.


Subject(s)
Basidiomycota , Triticum , Triticum/microbiology , Endophytes/genetics , Basidiomycota/genetics , Seeds , Plant Diseases/microbiology
13.
Chemosphere ; 312(Pt 1): 137013, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36397302

ABSTRACT

Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.


Subject(s)
Denitrification , Nitrogen , Nitrogen/chemistry , Waste Disposal, Fluid , Bioreactors , Oxygen , Hydrodynamics , Rivers , Ecosystem , Nitrification , Biofilms , Water , Wastewater
14.
Chemosphere ; 307(Pt 4): 135965, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963380

ABSTRACT

Microbial biofilms are common on abiotic and biotic surfaces, especially in rivers, which drive crucial ecosystem processes. The microorganisms of biofilms are surrounded by a self-produced extracellular polymeric substance (EPS). In this study, we investigated the effects of different hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances, and the architecture of biofilms. Multidisciplinary methods offer complementary insights into complex architecture correlations in biofilms. The biofilms formed in turbulent flow with high shear force were thin but dense. However, the biofilms formed under laminar flow conditions were thick but relatively loose. The thickness and compactness of the biofilms formed in the transitional flow were different from those of the other biofilms. The compact structure of the biofilm helped to resist shear forces to minimize detachment. Under the turbulent flow condition, bacteria, exopolysaccharides, and extracellular proteins permeated through the biofilm, and more extracellular polysaccharides enveloped bacteria and extracellular proteins. However, under the transitional flow condition, the extracellular polysaccharides and proteins were fewer than those under the turbulent flow condition; bacteria and algae were seen more prominently in the upper layer of the biofilm. Under the laminar flow condition, the distribution of extracellular polysaccharides, extracellular proteins, and bacteria was relatively uniform throughout the biofilm. The number of extracellular polysaccharides was greater than that of extracellular proteins. The total number of EPS in the biofilm was the largest under turbulent flow condition, followed by that under transitional flow condition and then under laminar flow condition. This study also observed that soluble EPS (S-EPS) were secreted first, followed by loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In particular, the adhesion of LB-EPS and flocculation capability of TB-EPS play some role in regulating biofilm formation. This study would help to perfect the five-stages theory of biofilm formation.


Subject(s)
Extracellular Polymeric Substance Matrix , Hydrodynamics , Bacteria , Biofilms , Ecosystem , Polysaccharides/chemistry , Proteins/chemistry
15.
Front Microbiol ; 13: 853176, 2022.
Article in English | MEDLINE | ID: mdl-35615520

ABSTRACT

Rhizosphere soil microorganisms have great agricultural importance. To explore the relationship between rhizosphere microorganisms and the disease incidence, and to optimize the concentration of difenoconazole fungicide for the control of wheat dwarf bunt, caused by Tilletia controversa Kühn, the rhizosphere microorganisms were characterized based on sequencing methods. We found that the disease incidence correlated with the relative abundance of some microbial communities, such as Acidobacteria, Nocardioides, Roseiflexaceae, Pyrinomonadaceae, and Gemmatimonadaceae. Actinobacteria showed significant differences in the infected soils when compared to the control soils, and the relative abundance of Acidobacteria, Pyrinomonadaceae, Gemmatimonadaceae, and Saccharimonadales populations was distinctly higher in the T. controversa-inoculated group than in the control group. The members of Dehalococcoidia, Nitrosomonadaceae, and Thermomicrobiales were found only in T. controversa-inoculated soils, and these taxa may have potential effects against the pathogen and contribute to disease control of wheat dwarf bunt. In addition, for T. controversa-infected plants, the soil treated with difenoconazole showed a high relative abundance of Proteobacteria, Actinobacteria, Ascomycota, Basidiomycota, Mortierellomycota, and Olpidiomycota based on the heatmap analysis and ANOVA. Our findings suggest that the optimized concentration of fungicide (5% recommended difenoconazole) exhibits better control efficiency and constant diversity in the rhizosphere soil.

16.
Environ Sci Pollut Res Int ; 29(17): 24574-24588, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35066845

ABSTRACT

An updated systematic review was conducted to assessing on the association between indoor air pollution caused by household energy consumption and childhood pneumonia in low- and middle-income countries. We performed a meta-analysis from the electronic databases of PubMed, Cochrane library, Web of Science, EMBASE. Studies were selected when they reported childhood pneumonia or ALRI in relation to indoor air pollution resulted from solid fuel. Studies must provide results on exposure prevalence of children aged below 5 years from Asia or Africa. We devoted ourselves to identifying randomized controlled experiments and observational epidemiological researches, which revealed the relation between household usage of solid fuel and childhood pneumonia. Among 1954 articles, 276 were reviewed thoroughly and 16 conduced to such a meta-analysis. It was found that there is a significant relationship between the solid fuel combustion and increasing risk of childhood pneumonia (OR = 1.66, 95%CI 1.36-2.02). The summary odds ratios from biomass use and mixed fuel use were, respectively, 1.86 (95%CI 1.15-3.02) and 1.58 (95%CI 1.38-1.81), with substantial between study heterogeneity (I2 = 87.2% and 29.2%, respectively). According to the subgroup analysis along with the meta-regression analysis, the risk of using solid fuel in Asian regions is higher than that in African regions. Studies based on non-hospital participates (I2 = 49.5%) may also a source of heterogeneity. We found that indoor air pollution generated by the usage of solid fuel might be a significant risk factor for pneumonia in children and suggested improving the indoor air quality by promoting cleaner fuel will be important in undeveloped countries.


Subject(s)
Air Pollution, Indoor , Air Pollution , Pneumonia , Air Pollution/analysis , Air Pollution, Indoor/analysis , Child , Child, Preschool , Cooking/methods , Developing Countries , Humans , Income , Pneumonia/epidemiology
17.
Mol Biol Rep ; 49(4): 2777-2784, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35006515

ABSTRACT

BACKGROUND: In orthodontics, mechanical stress plays an important role in the process of bone remodeling. Mechanical stress has an effect on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). However, the mechanism remains to be studied. The aim of this study is to investigate the effects of demethyltransferase fat mass and obesity-associated (FTO) on osteogenic differentiation of BMSCs under mechanical stress condition. METHODS AND RESULTS: The rat BMSCs were cultured in vitro, followed by flow cytometry to identify the cell surface antigens. Osteogenic differentiation of BMSCs was induced by mechanical stress by using the flexcell tension system for 6 h every day and 3 days in total. BMSCs were transfected by using plasmid for FTO knockdown. The expression level of FTO, hypoxia-inducible factor (HIF)-1α, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins (BMPs) and alkaline phosphatase (ALP) were measured by real-time qPCR, western blotting. ALP activity were determined by ALP staining assays. The expression of FTO and HIF-1α in BMSCs with mechanical stress were significantly higher than BMSCs without mechanical stress, also, the expression of osteogenic differentiation markers were higher in BMSCs with mechanical stress. Knockdown of FTO decreased expression of osteogenic differentiation marker and ALP activity in stretched BMSCs. In addition, the expression of HIF-1α was decreased after knocking down FTO. CONCLUSIONS: FTO promotes the expression of HIF-1α and osteogenic differentiation under the condition of mechanical stress. This finding may facilitate the clinical application of orthodontics and the mechanism research of mechanical stress-induced osteogenesis.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Marrow Cells , Cell Differentiation/genetics , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Rats , Stress, Mechanical , Up-Regulation
18.
Environ Res ; 204(Pt B): 112051, 2022 03.
Article in English | MEDLINE | ID: mdl-34529971

ABSTRACT

Anammox has been widely used for the treatment of nitrogen wastewater. However, the problem of stable NO2- supplement becomes one of the limiting factors. It is an effective method to obtain NO2- by denitrifying the NO3-, including the by-product of Anammox. In this study, NO2- was reinforced by bio-electrochemical system (BES) through the reaction of partial denitrification in situ in an Anammox reactor. Our results showed that both NO3- and NO2- can be reduced on the cathode with different Coulombic efficiencies. The reduction of NO3- amount increased with an increase in Inf-NO3-, which was greater than that of NO2-. The conversion amount of NO3- was 2.50% ± 17.25% to the theoretical Eff-NO3-, and the maximum reduction amount was 23.24% with the highest Coulombic efficiency of 3.56%. High throughput results showed that denitrifying bacteria, such as Limnobacter, Thauera, Denitratisoma, Nitrosomonas and Nitrospira, were attached to the cathode surface and in Anammox granular sludge. This study showed that NO2- can be supplied by reducing the by-product NO3- with denitrification cathode at Anammox environment in-situ.


Subject(s)
Nitrates , Nitrites , Anaerobic Ammonia Oxidation , Bioreactors , Denitrification , Electrodes , Nitrates/analysis , Nitrogen , Oxidation-Reduction , Sewage , Wastewater
19.
Arch Oral Biol ; 134: 105320, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34875442

ABSTRACT

OBJECTIVE: This research investigated the biological role of isoprenylcysteine carboxyl methyltransferase (ICMT) in tongue squamous cell carcinoma (TSCC) progression meanwhile to explore the conceivable mechanism. METHODS: The mRNA and protein expression were measured using real-time PCR and Western blot. Cell proliferation, apoptosis, cycle distribution, migration and invasion were evaluated by CCK-8 assay, flow cytometry, wound-healing assay and transwell assay. The anti-tumor activity of ICMT silencing was observed in nude mice. RESULTS: Our results indicated that silencing of ICMT-mediated methylation effectively inhibited TSCC cells proliferation in vitro and reduced tumor growth in vivo. Moreover, ICMT knockdown also induced cell apoptosis and cell cycle arrest of both CAL-27 and SCC-4 cells. In addition, CAL-27 and SCC-4 cells migration and invasion were weakened by ICMT siRNA. Mechanistically, ICMT deficiency significantly decreased the K-Ras and RhoA membrane targeting localization, leading to the suppression of K-Ras- and RhoA-mediated downstream signaling in CAL-27 and SCC-4 cells. CONCLUSIONS: Altogether, our findings identified a crucial role played by ICMT in the progression of TSCC and the potential mechanisms by which exerted its effects, indicating that targeting ICMT may represent a promising therapeutic strategy for TSCC.


Subject(s)
Carcinoma, Squamous Cell , Tongue Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Mice , Mice, Nude , Protein Methyltransferases , Signal Transduction , Tongue
20.
Environ Sci Technol ; 55(24): 16770-16782, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34855387

ABSTRACT

A complex dataset with 140 sampling events was generated using triple quadrupole gas chromatography-mass spectrometer to track the occurrence of 95 odorants in raw and finished water from 98 drinking water treatment plants in 31 cities across China. Data analysis identified more than 70 odorants with concentrations ranging from not detected to thousands of ng/L. In raw water, Pearson correlation analysis determined that thioethers, non-oxygen benzene-containing compounds, and pyrazines were classes of chemicals that co-occurred, and geosmin and p(m)-cresol, as well as cyclohexanone and benzaldehyde, also co-occurred, indicating similar natural or industrial sources. Based on classification and regression tree analysis, total dissolved organic carbon and geographical location were identified as major factors affecting the occurrence of thioethers. Indoles, phenols, and thioethers were well-removed through conventional and advanced treatment processes, while some aldehydes could be generated. For other odorants, higher removal was achieved by ozonation-biological activated carbon (39.3%) compared to the conventional treatment process (14.5%). To our knowledge, this is the first study to systematically identify the major odorants in raw water and determine suitable treatment strategies to control their occurrence by applying data analytics and statistical methods to the complex dataset. These provide informative reference for odor control and water quality management in drinking water industry.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Data Science , Dissolved Organic Matter , Odorants/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...