Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37509774

ABSTRACT

Cultured meat is one of the meat substitutes produced through tissue engineering and other technologies. Large-scale cell culture is the key for cultured meat products to enter the market. Therefore, this study is aimed to explore the effect of long-term passage in vitro on smooth muscle cells (SMCs) and the effect of transforming growth factor-ß1 (TGF-ß1) on SMCs in the late passage. Multiple passages lead to the decline of the proliferation rate of SMCs in the proliferation stage and the differentiation ability in the differentiation stage. Transcriptome results showed that the ECM pathway and aging-related signaling pathways were significantly up-regulated in the late passage period. TGF-ß1 did not promote SMCs of late passage proliferation at the proliferation stage but promoted the gene and protein expression of collagen as the main protein of the extracellular matrix proteins at the differentiation stage. In addition, proteomic analysis revealed that TGF-ß1 promoted the expression of cell adhesion molecules which activate the Hippo signaling pathway and the HIF-1 signaling pathway and further promoted the production of collagen-containing extracellular matrix proteins. This could provide ideas for large-scale production of cultured meat products using SMCs.

2.
Adv Exp Med Biol ; 1208: 175-190, 2021.
Article in English | MEDLINE | ID: mdl-34260027

ABSTRACT

Macroautophagy (referred to as autophagy hereafter) is a highly conserved catabolic process in eukaryotic cells. Autophagy is essential for cellular homeostasis through elimination and recycling of large cytoplasmic components, such as abnormal protein aggregates and damaged organelles, via lysosomal degradation. Since being originally identified by genetic screening in yeast, autophagy-related (ATG) genes have played a central role in autophagy research in different organisms, including plants, worms, flies, and mammals. Mouse models for monitoring autophagic activity or clarifying its biological functions have also been established. These mice are powerful tools to investigate roles of autophagy in vivo. Owing to the rapid technological advances in molecular biology, it is ever more efficient and simpler to manipulate autophagy-associated genes. Herein, we will introduce some commonly used approaches of gene silencing in mammalian cells, including CRIPSR/Cas9-mediated gene knockout and siRNA- and shRNA-mediated gene knockdown. We also summarized the common mouse models used for assessing autophagy. We hope to bring the researchers some useful information as they study autophagy.


Subject(s)
Autophagy , Lysosomes , Animals , Autophagy/genetics , Mammals , Mice , Proteins , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...