Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rec ; 23(2): e202200212, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36193972

ABSTRACT

Dimension engineering plays a critical role in determining the electrocatalytic performance of catalysts towards water electrolysis since it is highly sensitive to the surface and interface properties. Bearing these considerations into mind, intensive efforts have been devoted to the rational dimension design and engineering, and many advanced nanocatalysts with multidimensions have been successfully fabricated. Aiming to provide more guidance for the fabrication of highly efficient noble-metal-based electrocatalysts, this review has focused on the recent progress in dimension engineering of noble-metal-based electrocatalysts towards water splitting, including the advanced engineering strategies, the application of noble-metal-based electrocatalysts with distinctive geometric structure from 0D to 1D, 2D, 3D, and multidimensions. In addition, the perspective insights and challenges of the dimension engineering in the noble-metal-based electrocatalysts is also systematically discussed.

2.
Chem Rec ; 22(12): e202200176, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36000851

ABSTRACT

Developing advanced electrocatalysts is of great significance for boosting electrochemical water splitting to produce hydrogen. The electrocatalytic activity of a catalyst is associated with the surface/interface, geometric structure, and electronic properties. Coupling Ir with transition metal compounds is an effective strategy to improve their electrocatalytic performance. In this review, we summarize the recent progress of Ir coupled transition metal compound catalysts for the application in driving electrochemical water splitting. The significant role of Ir played in the promotion of electrocatalytic performance is firstly illustrated. Then, the applications of Ir-based catalysts in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are comprehensively discussed, with an emphasis on correlating the structure-function relationships. Lastly, the challenges and future directions for the fabrication of more advanced Ir coupled electrocatalysts are also presented.

3.
Front Chem ; 10: 944398, 2022.
Article in English | MEDLINE | ID: mdl-35800030

ABSTRACT

With activated carbon as raw material, AC-Ph-SO3H was prepared after oxidation with nitric acid, modification with halogenated benzene and sulfonation with concentrated sulfuric acid. After modified by 10% bromobenzene with toluene as a solvent for 5 h, followed sulfonation with concentrated sulfuric acid at 150°C, the -SO3H content of prepared AC-Ph-SO3H was 0.64 mmol/g. Acid content test, infrared spectroscopy and Raman spectroscopy detection proved that the surface of AC-Ph-SO3H was successfully grafted with -SO3H group. When used as a catalyst for the methylation of palmitate acid, the catalytic performance of AC-Ph-SO3H was explored. When the reaction time was 6 h, the amount of catalyst acid accounted for 2.5 wt% of palmitic acid, and the molar ratio of methanol/palmitic acid was 40, the esterification rate of palmitic acid was 95.2% and the yield of methyl palmitate was 94.2%, which was much better than those of its precursors AC, AC-O, and AC-Ph (both about 4.5%). AC-Ph-SO3H exhibited certain stability in the esterification reaction system and the conversion rate of palmitic acid was still above 80% after three reuses.

4.
Dalton Trans ; 51(30): 11208-11225, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35730677

ABSTRACT

Heteroatom doping plays a crucial role in improving the electrocatalytic performance of catalysts towards water splitting. Owing to the existence of Ru-O moieties, Ru is thus emerging as an ideal dopant for promoting the electrocatalytic performance for water splitting by modifying the electronic structure, introducing extra active sites, improving electronic conductivity, and inducing a strong synergistic effect. Benefitting from these advantages, Ru-doped nanomaterials have been widely investigated and employed as advanced electrocatalysts for water splitting, and many excellent Ru-doped electrocatalysts have been successfully developed. In an effort to obtain a better understanding of the influence of Ru doping on the electrocatalytic water splitting performance of nanocatalysts, we herein summarize the recent progress of Ru-doped electrocatalysts by focusing on the synthesis strategies and advantageous merits. Applications of these new materials in water electrolysis technology are also discussed with emphasis on future directions in this active field of research.

5.
Nanomaterials (Basel) ; 12(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35564172

ABSTRACT

Through the amination of oxidized activated carbon with ethylenediamine and then the adsorption of sulfuric acid, a strong carbon-based solid acid catalyst with hydrogen sulfate (denoted as AC-N-SO4H) was prepared, of which the surface acid density was 0.85 mmol/g. The acetalization of benzaldehyde with ethylene glycol catalyzed by AC-N-SO4H was investigated. The optimized catalyst dosage accounted for 5 wt.% of the benzaldehyde mass, and the molar ratio of glycol to benzaldehyde was 1.75. After reacting such mixture at 80 °C for 5 h, the benzaldehyde was almost quantitatively converted into acetal; the conversion yield was up to 99.4%, and no byproduct was detected. It is surprising that the catalyst could be easily recovered and reused ten times without significant deactivation, with the conversion yield remaining above 99%. The catalyst also exhibited good substrate suitability for the acetalization of aliphatic aldehydes and the ketalization of ketones with different 1,2-diols.

6.
Dalton Trans ; 51(12): 4590-4607, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35231082

ABSTRACT

Electrochemical water splitting plays a crucial role in transferring electricity to hydrogen fuel and appropriate electrocatalysts are crucial to satisfy the strict industrial demand. However, the successfully developed non-noble metal catalysts have a small tested range and the current density is usually less than 100 mA cm-2, which is still far away from the practical application standards. Aiming to provide guidance for the fabrication of more advanced electrocatalysts with a large current density, we herein systematically summarize the recent progress achieved in the field of cost-efficient and large-current-density electrocatalyst design. Beginning by illustrating the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) mechanisms, we elaborate on the concurrent issues of non-noble metal catalysts that are required to be addressed. In view of large-current-density operating conditions, some distinctive features with regard to good electrical conductivity, high intrinsic activity, rich active sites, and porous architecture are also summarized. Next, some representative large-current-density electrocatalysts are classified. Finally, we discuss the challenges associated with large-current-density water electrolysis and future pathways in the hope of guiding the future development of more efficient non-noble-metal catalysts to boost large-scale hydrogen production with less electricity consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...