Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
PeerJ Comput Sci ; 10: e2066, 2024.
Article in English | MEDLINE | ID: mdl-38983240

ABSTRACT

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten articles organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability. Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses. In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

2.
Clin Epidemiol ; 16: 367-377, 2024.
Article in English | MEDLINE | ID: mdl-38827433

ABSTRACT

Aim: The study aimed to analyze the associations between estimated pulse wave velocity (ePWV) and 5-year mortality in atherosclerotic cardiovascular disease (ASCVD) patients with and without standard modifiable risk factors (SMuRFs), which included smoking status, hypertension, diabetes, and hypercholesterolemia. Methods: The present retrospective cohort study utilized data from the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2016. Patients with ASCVD who completed both the questionnaire survey and serum testing were included. Patients were categorized into the ≥1 SMuRF group if they had at least one SMuRF, while those without any SMuRFs were classified into the SMuRF-less group. The ePWV, which was calculated using the age and mean blood pressure, was evenly divided into three categories: low (Q1), medium (Q2), and high (Q3). Multivariable weighted Cox proportional-hazard regression analyses were utilized to explore the risk factors associated with 5-year mortality in patients with and without SMuRFs. And restricted cubic spline curve (RCS) was used to assess their nonlinear correlation. Results: A total of 1901 patients with ASCVD were included in the study. For the patients in ≥1 SMuRF group, the Q3 group included patients who were older, with a higher proportion of males, more comorbidities, and a lower body mass index than the Q1 group (P<0.05). The Cox proportional-hazard regression model results revealed, the Q3 group had a higher risk of 5-year mortality than the Q1 group [hazard ratio (HR) 4.30, 95% confidence interval (CI) (2.66, 6.95), P<0.001]. RCS demonstrated a linear trend between high level of ePWV and decreased risks of mortality. Similar results were observed in the SMuRF-less group [HR 10.62, 95% CI (1.22, 92.06), P=0.032]. Conclusion: A high level of ePWV signified a higher risk of 5-year mortality in ASCVD patients with and without SMuRFs.

3.
J Inflamm Res ; 17: 2811-2823, 2024.
Article in English | MEDLINE | ID: mdl-38737113

ABSTRACT

Background: Inflammatory Bowel Disease (IBD) patients may experience cognitive impairments in Visuospatial Working Memory (VSWM), significantly impacting their quality of life. However, the mechanisms underlying these impairments remain poorly understood. Methods: We studied functional MRI and graph theory analysis to investigate changes in functional connectivity networks during the Mental Rotation Task (MRT) in IBD patients. Twenty IBD patients (13 males, 7 females; mean age = 34.95 ± 13.80 years; mean disease duration = 2.43 ± 2.37 years) participated in the study. Exclusion criteria encompassed recent use of analgesics, 5-Aminosalicylate, corticosteroids, or immunosuppressants within the past three months. Additionally, we recruited 20 age-, gender-, and education-matched healthy controls for comparison. Results: Compared to a control group, IBD patients exhibited significantly longer reaction times and reduced accuracy during the MRT. Our analysis revealed abnormalities in multiple nodal attributes within the functional connectivity network, particularly in regions such as the bilateral orbitofrontal cortex, right supplementary motor area, bilateral parahippocampal gyrus, and bilateral anterior temporal lobe. We observed that the nodal efficiency in the left temporal pole is negatively correlated with Red Blood Cell Distribution Width (RDW) and positively correlated with response time of MRT. Conclusion: Our findings revealed notable abnormalities in multiple node attributes among IBD patients during MRT, providing evidence of cognitive impairments in VSWM in IBD patients. This study found RDW maybe can serve as a clinical indicator for predicting early VSWM impairment in patients with IBD.

4.
Front Cardiovasc Med ; 11: 1367919, 2024.
Article in English | MEDLINE | ID: mdl-38751661

ABSTRACT

Background: Neutrophil-to-high-density lipoprotein cholesterol ratio (NHR), monocyte-to-high-density lipoprotein cholesterol ratio (MHR), lymphocyte-to-high-density lipoprotein cholesterol ratio (LHR), platelet-to-high-density lipoprotein cholesterol ratio (PHR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI) have been identified as immune-inflammatory biomarkers associated with the prognosis of cardiovascular diseases. However, the relationship of these biomarkers with the prognosis of myocardial infarction with non-obstructive coronary arteries (MINOCA) remains unclear. Method: Patients with MINOCA who underwent coronary angiography at the 920th Hospital of Joint Logistics Support Force were included in our study. Clinical baseline characteristics and laboratory testing data were collected from the hospital record system. The patients were divided into two groups on the basis of major adverse cardiovascular events (MACE) occurrence. Multiple logistic regression analysis was conducted to assess the relationship between NHR, MHR, LHR, PHR, SII, SIRI, AISI, and MACE. Receiver operating characteristic (ROC) curves were generated to evaluate the predictive value of NHR, MHR, LHR, PHR, SII, SIRI, and AISI for MACE in patients with MINOCA. The accuracy of the prediction was indicated by the area under the curve (AUC) value. Results: The study included 335 patients with MINOCA. (81 in the MACE group and 254 in the No-MACE group). The MACE group had higher levels of NHR, MHR, LHR, PHR, SII, SIRI, and AISI than the No-MACE group. Multiple logistic regression analysis adjusted for confounding factors indicated that the higher levels of NHR, MHR, PHR, SII, SIRI, and AISI were associated with the occurrence of MACE in patients with MINOCA (P < 0.001). The AUC values for NHR, MHR, PHR, SII, SIRI, and AISI were 0.695, 0.747, 0.674, 0.673, 0.688, and 0.676, respectively. The combination of NHR, MHR, PHR, SII, SIRI, and AISI improved the accuracy of predicting MACE in patients with MINOCA (AUC = 0.804). Conclusion: Higher levels of NHR, MHR, PHR, SII, SIRI, and AISI were associated with the occurrence of MACE, and the combination of NHR, MHR, PHR, SII, SIRI, and AISI improved the accuracy for predicting the incidence of MACE events in patients with MINOCA.

5.
RMD Open ; 10(1)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428977

ABSTRACT

OBJECTIVE: This study explored the dynamic functional connective (DFC) alterations in patients with rheumatoid arthritis (RA) and investigated the correlation between the neuropsychiatric symptoms, peripheral inflammation and DFC alterations. METHOD: Using resting-state functional MRI, we investigated the DFC based on spatial independent component analysis and sliding window method for 30 patients with RA and 30 healthy controls (HCs). The Spearman correlation was calculated between aberrant DFC alterations, Montreal Cognitive Assessment (MoCA), Hospital Anxiety and Depression Scale (HAD), C reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Diagnostic efficacy of indicators was assessed using receiver operating characteristic analysis (ROC). RESULTS: Three dynamic functional states were identified. Compared with HC, patients with RA showed reduced FC variabilities between sensorimotor network (SMN) and insula, SMN and orbitofrontal cortex, which were the crucial regions of sensory processing network. The above FC variabilities were correlated with the MoCA, HAD, CRP and ESR in patients with RA. Additionally, the CRP and ESR were negatively correlated to MoCA and positively related to HAD in patients with RA. The ROC analysis results showed that MoCA, HAD and FC variabilities of the sensory processing network could distinguish patients with RA from HC and also identify patients with RA with high ESR. CONCLUSION: Our findings demonstrated that abnormal DFC patterns in sensory processing networks in patients with RA were closely associated with peripheral inflammation and neuropsychiatric symptoms. This indicates that the dynamic temporal characteristics of the brain functional network may be potential neuroimaging biomarkers for revealing the pathological mechanism of RA.


Subject(s)
Arthritis, Rheumatoid , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Inflammation , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/diagnosis , Brain/diagnostic imaging , C-Reactive Protein
6.
Heliyon ; 10(2): e24725, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304809

ABSTRACT

Background: Cognitive deficits are common in rheumatoid arthritis (RA) patients, but the mechanisms remain unclear. We investigated the effective connectivity and structural alterations of the core brain regions in RA patients with cognitive impairment. Methods: Twenty-four female patients with RA and twenty-four healthy controls were enrolled. We analyzed abnormal brain activity patterns using functional MRI during the Iowa gambling task (IGT) and core regions effective connectivity using dynamic causal model (DCM). Structural alterations of white matter volume (WMV) and gray matter volume (GMV) were detected using voxel-based morphometry (VBM). Results: RA patients showed altered activation patterns of the cortico-thalamo-cortical network, increased coupling strength from the left ventromedial prefrontal gyrus to the anterior cingulate cortex (ACC), the ACC to the right thalamus, and decreased connectivity from the thalamus to left hippocampus. VBM structural analysis showed increased GMV in the bilateral orbital frontal gyrus, bilateral hippocampus and right putamen, and reduced GMV and WMV in the bilateral thalamus in RA patients. Right thalamic GMV and WMV were positively correlated with the right thalamus-to-hippocampus connective strength. Additionally, the bold signal, GMV and WMV of the right thalamus were positively correlated with cognitive performance (IGT score) in RA patients. Conclusion: Results suggest a structural and functional deficiency in the cortico-thalamo-cortical network, which is characterized by increased ACC-to-thalamus strength and reduced thalamus-to-hippocampus coupling in RA patients. The cognitive dysfunction may be the result of compensatory measures against imbalanced cortico-thalamic-cortical coupling.

7.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609176

ABSTRACT

Data-driven computational analysis is becoming increasingly important in biomedical research, as the amount of data being generated continues to grow. However, the lack of practices of sharing research outputs, such as data, source code and methods, affects transparency and reproducibility of studies, which are critical to the advancement of science. Many published studies are not reproducible due to insufficient documentation, code, and data being shared. We conducted a comprehensive analysis of 453 manuscripts published between 2016-2021 and found that 50.1% of them fail to share the analytical code. Even among those that did disclose their code, a vast majority failed to offer additional research outputs, such as data. Furthermore, only one in ten papers organized their code in a structured and reproducible manner. We discovered a significant association between the presence of code availability statements and increased code availability (p=2.71×10-9). Additionally, a greater proportion of studies conducting secondary analyses were inclined to share their code compared to those conducting primary analyses (p=1.15*10-07). In light of our findings, we propose raising awareness of code sharing practices and taking immediate steps to enhance code availability to improve reproducibility in biomedical research. By increasing transparency and reproducibility, we can promote scientific rigor, encourage collaboration, and accelerate scientific discoveries. We must prioritize open science practices, including sharing code, data, and other research products, to ensure that biomedical research can be replicated and built upon by others in the scientific community.

8.
Eur J Med Res ; 28(1): 276, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37559139

ABSTRACT

OBJECTIVE: To identify the potential diagnostic biomarkers of rheumatoid arthritis (RA) and assess the relation between visuospatial dysfunction and disease activity in RA patients using mental rotation task (MRT)-based functional magnetic resonance imaging (fMRI). METHODS: A total of 27 RA patients (11 in remission, 16 in active) and 27 well-matched controls were enrolled. The visuospatial function of the subjects was measured by MRT. Brain activity data were collected using blood oxygen level dependent fMRI technique under MRT. Disease activity score 28 (DAS28) was used to evaluate the disease severity of RA patients. An analysis of the correlations between abnormal visuospatial-related brain regions, MRT performance, and DAS28 was conducted. RESULTS: RA patients performed worse on MRT than controls. Compared to the control group, RA patients showed enhanced activation in the left precuneus, left superior frontal gyrus and right cingulate gyrus during the rotation task, with left hemisphere dominance. RA patients in active showed enhanced activation in the left precuneus, left middle frontal gyrus and right cingulate gyrus compared to the patients in remission. The left precuneus activation was negatively correlated with MRT accuracy (r = -0.621, p = 0.01) and positively correlated with DAS28 (r = 0.710, p = 0.002), and MRT accuracy was negatively correlated with DAS28 in RA patients (r = -0.702, p = 0.002). CONCLUSION: Enhanced activation of the left precuneus in RA patients affects visuospatial function and is closely related to disease activity. These changes may provide a valuable diagnostic neuroimaging biomarker of RA.


Subject(s)
Arthritis, Rheumatoid , Brain , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/diagnostic imaging , Magnetic Resonance Imaging/methods , Parietal Lobe/diagnostic imaging
9.
Front Cardiovasc Med ; 9: 991479, 2022.
Article in English | MEDLINE | ID: mdl-36505353

ABSTRACT

Background: Patients with ST-segment elevation myocardial infarction (STEMI) with diabetes mellitus (DM) had higher mortality and poorer prognosis than those without DM. Previous studies had demonstrated the effectiveness of regional network systems (RNS) for reperfusion therapy in patients with STEMI. However, the differences in nursing care with RNS in subgroups of patients with DM with STEMI were unclear. Our study aimed to evaluate the validity of RNS in reperfusion therapy in patients with STEMI with or without DM. Methods: We retrospectively enrolled patients with STEMI who received reperfusion therapy at the chest pain center of the 920th Hospital in Kunming City, Yunnan Province from 2019 to 2021. Personal information and hospitalization information for patients with STEMI were collected through the chest pain center registration system. Univariate and multivariate logistic regression were used to analyze factors associated with outcomes in patients with STEMI who received RNS. Wilcoxon rank-sum test and chi-squared test were used to analyze the differences in reperfusion therapy times and clinical outcomes between RNS and non-RNS in patients with STEMI with or without DM. Results: This study enrolled 1,054 patients with STEMI, including 148 patients with DM and 906 patients without DM. Logistic regression analysis indicated that DM was associated with patients with STEMI who received RNS [OR 1.590 95% CI (1.034-2.446), P = 0.035]. RNS may decrease the reperfusion therapy time in patients with STEMI and patients without DM with STEMI, including the first medical contact (FMC) to door, FMC to wire and FMC to catheterization laboratory activity (all P < 0.05). However, we found no significant difference in reperfusion therapy times with and without RNS in patients with DM (all P > 0.05). Conclusion: Regional network systems may decrease the reperfusion therapy time in patients without DM with STEMI, but no decrease was found in patients with DM with STEMI.

10.
Genet Res (Camb) ; 2021: 2949986, 2021.
Article in English | MEDLINE | ID: mdl-34899056

ABSTRACT

Aims: The main treatment for coronary heart disease is percutaneous coronary intervention (PCI), and drug-eluting stents are designed to inhibit vascular smooth muscle cell (VSMCs) proliferation and migration causing restenosis by releasing pharmacological agents into the vessel wall. Once drug-eluting stents are deployed, these pharmacological agents exert many biological effects in the coronary circulation, not only inhibition of VSMCs but also extension to vascular endothelial cells (VECs). The purpose of this study was to explore target molecules that inhibit VSMCs proliferation without affecting VECs. Methods: mRNA and protein expressions of transient receptor potential channels (TRPCs) in cultured VSMCs and VECs were determined by western blotting and RT-qPCR. VSMCs and VECs proliferation was evaluated using CCK-8 assays and western blotting of proliferating cell nuclear antigen (PCNA). Calcium backfilling assays were performed to detect intracellular calcium ion concentration in cultured VSMCs and VECs. Results: The TRPC6 expression was more abundant in VECs than VSMCs, while TRPC4 and TRPC5 expressions were more abundant in VSMCs than VECs. Knockdown of TRPC4 or TRPC5 alone had no remarkable inhibitory effect on VSMC proliferation. Synergistic knockdown of TRPC4 and TRPC5 inhibited the proliferation of VSMCs, declined the expression of the PCNA, and reduced the intracellular calcium ion concentration but not VECs. Conclusion: These data suggest that concurrent inhibition of TRPC4 and TRPC5 inhibits VSMCs proliferation without affecting VECs, thus providing novel targets for developing pharmacological agents for drug-eluting stents.


Subject(s)
Endothelial Cells , Myocytes, Smooth Muscle , TRPC Cation Channels , Cell Proliferation , Cells, Cultured , Down-Regulation , Endothelial Cells/cytology , Humans , Myocytes, Smooth Muscle/cytology , Percutaneous Coronary Intervention , TRPC Cation Channels/genetics
11.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885645

ABSTRACT

X-ray computed tomography (CT) imaging can produce three-dimensional and high-resolution anatomical images without invasion, which is extremely useful for disease diagnosis in the clinic. However, its applications are still severely limited by the intrinsic drawbacks of contrast media (mainly iodinated water-soluble molecules), such as rapid clearance, serious toxicity, inefficient targetability and poor sensitivity. Due to their high biocompatibility, flexibility in preparation and modification and simplicity for drug loading, organic nanoparticles (NPs), including liposomes, nanoemulsions, micelles, polymersomes, dendrimers, polymer conjugates and polymeric particles, have demonstrated tremendous potential for use in the efficient delivery of iodinated contrast media (ICMs). Herein, we comprehensively summarized the strategies and applications of organic NPs, especially polymer-based NPs, for the delivery of ICMs in CT imaging. We mainly focused on the use of polymeric nanoplatforms to prolong circulation time, reduce toxicity and enhance the targetability of ICMs. The emergence of some new technologies, such as theragnostic NPs and multimodal imaging and their clinical translations, are also discussed.


Subject(s)
Contrast Media/administration & dosage , Dendrimers/chemistry , Iodine Compounds/administration & dosage , Iodine/administration & dosage , Micelles , Tomography, X-Ray Computed/methods , Animals , Humans , Liposomes
12.
Front Behav Neurosci ; 15: 725908, 2021.
Article in English | MEDLINE | ID: mdl-34776889

ABSTRACT

Objective: This study aimed to explore the structural changes in patients with subclinical hypothyroidism (SCH) using voxel-based morphometry (VBM) and to investigate the altered attentional control networks using functional MRI (fMRI) during the performance of a modified Stroop task with Chinese characters. Methods: High-resolution three-dimensional (3D) T1-weighted images and an fMRI scan were taken from 18 patients with SCH and 18 matched control subjects. The Montreal Cognitive Assessment Chinese-revised (MoCA-CR) and the Stroop task were used to evaluate the cognitive and attention control of the participants. Results: Compared to controls, the VBM results showed decreased gray matter volumes (GMVs) in bilateral prefrontal cortices (PFCs, including middle, medial, and inferior frontal gyri), cingulate gyrus, precuneus, left middle temporal gyrus, and insula in patients with SCH. The fMRI results showed a distributed network of brain regions in both groups, consisting of PFCs (including superior and middle and inferior frontal cortices), anterior cingulate cortex (ACC), posterior cingulate cortex, and precuneus, as well as the insula and caudate nucleus. Compared to controls, the SCH group had lower activation of the above brain areas, especially during the color-naming task. In addition, the normalized GMV (nGMV) was negatively correlated with thyroid-stimulating hormone (TSH) level (r = -0.722, p < 0.001). Conclusion: Results indicate that patients with SCH exhibit reduced GMVs, altered BOLD signals, and activation in regions associated with attention control, which further suggest that patients with SCH may have attentional control deficiency, and the weakened PFC-ACC-precuneus brain network might be one of the neural mechanisms. Negative correlations between nGMV and TSH suggest that TSH elevation may induce abnormalities in the cortex.

13.
Brain Imaging Behav ; 15(4): 1898-1911, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32996012

ABSTRACT

Hemodialysis (HD) is associated with cognitive impairment in patients with end-stage renal disease (ESRD). However, the neural mechanism of spatial working memory (SWM) impairment in HD-ESRD patients remains unclear. We investigated the abnormal alterations in SWM-associated brain activity patterns in HD-ESRD patients using blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) technique during n-back tasks. Twenty-two HD-ESRD patients and 22 well-matched controls underwent an fMRI scan while undergoing a three-load n-back tasks with different difficulty levels. Cognitive and mental states were assessed using a battery of neuropsychologic tests. The HD-ESRD patients exhibited worse memory abilities than controls. Compared with the control group, the HD-ESRD patient group showed lower accuracy and longer response time under the n-back tasks, especially in the 2-back task. The patterns of brain activation changed under different working memory loads in the HD-ESRD patients, showing decreased activity in the right medial frontal gyrus and inferior frontal gyrus under 0-back and 1-back task, while more decreased activation in the bilateral frontal cortex, parietal lobule, anterior/posterior cingulate cortex and insula cortex under 2-back task. With the increase of task difficulty, the activation degree of the frontal and parietal cortex decreased. More importantly, we found that lower activation in frontal cortex and parietal lobule was associated with worse cognitive function in the HD-ESRD patients. These results demonstrate that the abnormal brain activity patterns of frontal cortex and parietal lobule may reflect the neural mediation of SWM impairment.


Subject(s)
Kidney Failure, Chronic , Memory, Short-Term , Brain/diagnostic imaging , Brain Mapping , Humans , Kidney Failure, Chronic/diagnostic imaging , Kidney Failure, Chronic/therapy , Magnetic Resonance Imaging , Renal Dialysis
15.
Peptides ; 133: 170386, 2020 11.
Article in English | MEDLINE | ID: mdl-32827590

ABSTRACT

Angiotensin II (Ang II) is an oligopeptide of the renin-angiotensin system, and Ang II-induced vascular smooth muscle cell (VSMC) proliferation is an important pathophysiological process involved in atherosclerosis; however, the underlying mechanism remains unclear. Orai1 and Stim1 are the main components of store-operated Ca2+ entry (SOCE), which has an important effect on VSMC proliferation. In the present study, we showed that Ang II-induced human coronary smooth muscle cell (HCSMC) proliferation was associated with increased calcium entry. The expression of Orai1, but not that of Stim1, was significantly upregulated in Ang II-treated HCSMCs. However, knockdown of Orai1 or Stim1 decreased HCSMC proliferation and SOCE activity in Ang II-treated HCSMCs. Orai1 was significantly downregulated in HCSMCs transfected with short interfering RNA (siRNA) against NOX2 or NF-κB. Transfection with siRNA against NOX2 or p65 also decreased Ang II-induced HCSMCs SOCE activation and proliferation. These findings suggested that Ang II upregulated Orai1 via the NF-κB and NOX2 pathways, leading to increased SOCE and HCSMC proliferation. The molecular factors mediating Ang II-induced SOCE upregulation are potential therapeutic targets for the prevention of Ang II-sensitive or Ang II-dependent HCSMC proliferation.


Subject(s)
Angiotensin II/pharmacology , Calcium/metabolism , Muscle, Smooth, Vascular/cytology , ORAI1 Protein/metabolism , Angiotensin II/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Coronary Vessels/cytology , Humans , NADPH Oxidase 2/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Up-Regulation/drug effects
16.
Behav Brain Res ; 393: 112796, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32634541

ABSTRACT

Drug addiction continues to threaten the health and welfare of people worldwide, and ephedrine abuse is a serious drug problem in many areas of the world. Ephedrine toxicity is thought to induce behavioral effects primarily through actions on the central nervous system. The corticotropin-releasing factor (CRF) system plays an important role in regulating behavioral effects induced by addictive drugs, but whether CRF is related to ephedrine toxicity remains unclear. This study seeks to examine whether there is a correlation between the CRF and chronic ephedrine neurotoxicity. To this end, we established a chronic ephedrine (0.4-1.6 mg/kg/d) exposure model in rhesus macaques, assessed its effects on body weight and behavior, examined neuronal changes in the prefrontal cortex and hippocampus, and measured the CRF expression in the prefrontal cortex and hippocampus. After 8-weeks of exposure to ephedrine, the toxic effects of ephedrine included significant weight loss and induction of behavioral changes in rhesus macaques. In particular, in the modeling group, the abnormal behavioral changes mainly manifested as irritability and behavioral sensitization. Meanwhile, the histological abnormalities included neuronal morphological changes, pyknosis and irregular shapes of neurons in the prefrontal cortex and hippocampus. In addition, the expression levels of CRF mRNA and protein were increased in the prefrontal cortex and hippocampus of ephedrine-treated animals. In summary, the finding of this study indicated that ephedrine neurotoxicity can cause neuronal damage in cerebral cortex, which in turn can result in certain neurobehavioral abnormalities, and that CRF expression in prefrontal cortex and hippocampus is elevated in response to ephedrine exposure. These observations suggested that long-term exposure to ephedrine might be causing neurotoxicity and leading to neurobehavioral disorders accompanied by up-regulation of CRF in prefrontal cortex and hippocampus.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Ephedrine/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Animals , Macaca mulatta , Male , Up-Regulation
17.
Macromol Rapid Commun ; 41(4): e1900570, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31894599

ABSTRACT

Covalent organic frameworks (COFs) as drug delivery systems have shown great promise, but their pharmaceutical applications are often limited by complex building blocks, tedious preparations, irregular shape, and uncontrolled drug release within target cells. Herein, a facile strategy is developed to prepare PEGylated redox-responsive nanoscale COFs (denoted F68@SS-COFs) for efficiently loading and delivering doxorubicin (DOX) by use of FDA-approved Pluronic F68 and commercially available building blocks. The obtained F68@SS-COFs with controlled size, high stability, and good biocompatibility can not only achieve a very high DOX-loading content (about 21%) and very low premature leakage at physiological condition but can also rapidly respond to the tumor intracellular microenvironment and efficiently release DOX to kill tumor cells. Considering the readily available raw materials, simple preparation process, and desirable redox-responsiveness, the strategy provided here opens up a promising avenue to develop well-defined COFs-based nanomedicines for cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Nanoparticles/chemistry , Drug Carriers/analysis , Drug Liberation , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/ultrastructure , Nanoparticles/ultrastructure , Oxidation-Reduction , Particle Size , Polyethylene Glycols/chemistry
18.
Neurotox Res ; 37(3): 602-615, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31858422

ABSTRACT

Ephedrine abuse has spread in many parts of the world, severely threatening human health. The mechanism of ephedrine toxicity is still unclear. To explore the possible neural mechanisms of ephedrine toxicity, this study established a non-human primate model of ephedrine exposure, analyzed the functional connectivity changes in its prefrontal cortex through resting state BOLD-fMRI, and then inspected the pathophysiological changes as well as the expression of the cyclic adenosine monophosphate response element-binding protein (CREB), phosphorylated CREB (P-CREB), and CREB target proteins (c-fos and fosB) in the prefrontal cortex. After ephedrine toxicity, we found that the prefrontal cortex of monkeys strengthened its functional connectivity with the brain regions that perform motivation, drive, reward, and learning and memory functions and weakened its functional connectivity with the brain regions that perform cognitive control. These results suggest that ephedrine toxicity causes abnormal neural circuits that lead to the amplification and enhancement of drug-related cues and the weakening and damage of cognitive control function. Histology showed that the neurocytotoxicity of ephedrine can cause neuronal degeneration and apoptosis. Real-time PCR and Western blot showed increased expression of CREB mRNA and CREB/P-CREB/c-fos/fosB protein in the prefrontal cortex after ephedrine toxicity. Collectively, the present study indicates that the enhancement of drug-related cues and the weakening of cognitive control caused by abnormal neural circuits after drug exposure may be a major mechanism of brain function changes caused by ephedrine. These histological and molecular changes may be the pathophysiological basis of brain function changes caused by ephedrine.


Subject(s)
Apoptosis/drug effects , Central Nervous System Stimulants/toxicity , Cyclic AMP Response Element-Binding Protein/metabolism , Ephedrine/toxicity , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Animals , Brain/drug effects , Brain/physiology , Brain Mapping , Cell Size/drug effects , Macaca mulatta , Magnetic Resonance Imaging , Male , Neural Pathways/drug effects , Neural Pathways/physiology
19.
Mediators Inflamm ; 2019: 4530534, 2019.
Article in English | MEDLINE | ID: mdl-31565033

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory disease, and macrophages play a key role in all phases of AS. Recent studies have shown that miR-221 is a biomarker for AS and stroke; however, the role and mechanism of miR-221 in AS are unclear. Herein, we found that miR-221 and NCoR levels were decreased in ox-LDL-treated THP-1-derived macrophages. In contrast, DNMT3b, IL-6, and TNF-α expression levels were increased under these conditions. Upregulation of miR-221 or NCoR could partially inhibit ox-LDL-induced IL-6 and TNF-α expression. Further studies showed that DNMT3b was a target of miR-221. DNMT3b inhibition also suppressed IL-6 and TNF-α expression and increased NCoR expression in the presence of ox-LDL. Moreover, DNMT3b was involved in ox-LDL-induced DNA methylation in the promoter region of NCoR. These findings suggest that miR-221 suppresses ox-LDL-induced inflammatory responses via suppressing DNMT3b-mediated DNA methylation in the promoter region of NCoR. These results provide a rationale for using intracellular miR-211 as a possible antiatherosclerotic target.


Subject(s)
Inflammation/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Blotting, Western , DNA (Cytosine-5-)-Methyltransferases/metabolism , HEK293 Cells , Humans , Interleukin-6/metabolism , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism , DNA Methyltransferase 3B
20.
Neuroscience ; 415: 97-106, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31330230

ABSTRACT

The dopamine D2 receptor (DRD2) and dopamine transporter (DAT) play a regulatory role in dopaminergic neurotransmission and thus play an important role in drug addiction. The prefrontal cortex (PFC), a critical part of the mesencephalic dopaminergic system, is thought to be involved in the development and maintenance of drug addiction. The addiction to ketamine is thought to induce behavioral effects primarily through actions on the central nervous system. However, the neural mechanism underlying the effects of ketamine addiction remains unclear. In this study, we investigate the involvement of PFC DRD2 and DAT in ketamine addiction effects after ketamine administration for 10 weeks in nonhuman primates. To this end, after administering ketamine to rhesus monkeys for 10 weeks, we assessed changes in body weight and behavior. Additionally, neuronal changes in the PFC were examined by hematoxylin and eosin (HE) staining; the DRD2 and DAT mRNA and protein expression levels in the PFC were determined by real-time PCR and Western blot analysis, respectively. After 10-week ketamine administration, the assessment of the manifestations of toxicity in rhesus monkeys revealed significant changes in body weight and behavior, decreased DRD2 and DAT mRNA and protein expression in the PFC, and histological abnormalities including neuronal eosinophilia, pyknosis and disorderly arrangement of neurons in the PFC. These results suggest that the reduced expression of DRD2 and DAT in PFC could be involved in the behavioral and the neurological changes induced by ketamine administration, which may play an important role in the molecular mechanisms of ketamine addiction.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Ketamine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Animals , Body Weight/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Down-Regulation , Macaca mulatta , Male , Neurons/metabolism , Prefrontal Cortex/pathology , Substance-Related Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...