Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(13): 9543-9556, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38518176

ABSTRACT

Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.

2.
ACS Chem Biol ; 18(8): 1829-1837, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37505910

ABSTRACT

With the increasing demand for the regulation of CRISPR systems, a considerable number of studies have been conducted to control their excessive activity levels. In this context, we propose a method that involves a bioorthogonal cleavage reaction between isonitrile and tetrazine to modulate the cleavage activity of the CRISPR system. Importantly, isonitrile demonstrates significant potential for modifying sgRNAs, making it a promising candidate for bioorthogonal reactions, a phenomenon that has not been previously reported. Our approach utilizes the 3-isocyanopropyl-carbonate group as a caging group to deactivate the CRISPR systems, while tetrazine acts as an activator to restore their activities. Through the implementation of post-synthetic modifications and click-and-release chemistry, we have successfully achieved the regulation of RNA-guided nucleic acid cleavage, which holds great promise for controlling gene editing in human cells.


Subject(s)
Heterocyclic Compounds , RNA , Humans , RNA, Guide, CRISPR-Cas Systems , Gene Editing , Click Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...