Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 260: 115729, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37607439

ABSTRACT

Obesity, a global pandemic posing a growing threat to human health, necessitates the development of effective and safe anti-obesity agents. Our previous studies highlighted the lipid-lowering effects of indolylquinazoline Bouchardatine and its derivatives. In this study, we employed scaffold hopping and simplification strategies to design and synthesize two new series derivatives by modifying the D ring. Extensive discussions have been conducted regarding the structure-activity relationship between lipid-lowering activity and the new compounds. These discussions have resulted in the discovery of 2-pyrimidinylindole derivatives as a promising scaffold for anti-obesity treatment. The new 2-pyrimidinylindole derivatives exhibited comparable lipid-lowering activity to the previously reported indolylquinazoline derivatives, including SYSU-3d and R17, with reduced toxicity. The most potent compound, 5a, demonstrated a larger therapeutic index, improved aqueous solubility and oral bioavailability compared to the previous lead compounds. In vivo evaluation indicated that 5a effectively reduced lipid accumulation in adipose tissue, improved glucose tolerance, and mitigated insulin resistance and liver function damage caused by a high-fat and high-cholesterol diet. Mechanism studies indicated that 5a may regulate lipid metabolism through the modulation of the PPARγ signaling pathway. Overall, our study has identified a highly active compound 5a, and provided the basis for further development of 2-pyrimidinylindole as a promising scaffold for obesity treatment.


Subject(s)
Anti-Obesity Agents , Hypercholesterolemia , Humans , Lipid Metabolism , Anti-Obesity Agents/pharmacology , Biological Availability , Obesity/drug therapy , Lipids
2.
J Med Chem ; 66(11): 7387-7404, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37253101

ABSTRACT

Metabolic reprogramming is a crucial hallmark of tumorigenesis. Modulating the reprogrammed energy metabolism is an attractive anticancer therapeutic strategy. We previously found a natural product, bouchardatine, modulated aerobic metabolism and inhibited proliferation in the colorectal cancer cell (CRC). Herein, we designed and synthesized a new series of bouchardatine derivatives to discover more potential modulators. We applied the dual-parametric high-content screening (HCS) to evaluate their AMP-activated protein kinase (AMPK) modulation and CRC proliferation inhibition effect simultaneously. And we found their antiproliferation activities were highly correlated to AMPK activation. Among them, 18a was identified with nanomole-level antiproliferation activities against several CRCs. Interestingly, the evaluation found that 18a selectively upregulated oxidative phosphorylation (OXPHOS) and inhibited proliferation by modulating energy metabolism. Additionally, this compound effectively inhibited the RKO xenograft growth along with AMPK activation. In conclusion, our study identified 18a as a promising candidate for CRC treatment and suggested a novel anti-CRC strategy by AMPK activating and OXPHOS upregulating.


Subject(s)
AMP-Activated Protein Kinases , Colorectal Neoplasms , Humans , AMP-Activated Protein Kinases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Indole Alkaloids/pharmacology , Energy Metabolism , Cell Proliferation , Cell Line, Tumor
3.
Br J Pharmacol ; 179(7): 1411-1432, 2022 04.
Article in English | MEDLINE | ID: mdl-34783017

ABSTRACT

BACKGROUND AND PURPOSE: Non-alcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD) and no pharmacological treatment as yet been approved. Identification of novel therapeutic targets and their agents is critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH: The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were investigated by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet and the methionine-choline deficient diet-fed mice). The actions of SYSU-3d in vivo were evaluated. KEY RESULTS: HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly identified activator SYSU-3d effectively inhibited all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of PPARγ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis. Thus, increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells showed the HSF1/PGC-1α pathway was mainly responsible for the anti-NASH effects of SYSU-3d independent of AMP-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS: Activation of HSF1 is a practical therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial pathway and SYSU-3d can be considered as a potential candidate for the treatment of NASH.


Subject(s)
Heat Shock Transcription Factors , Mitochondria , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/metabolism , Animals , Heat Shock Transcription Factors/agonists , Heat Shock Transcription Factors/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
4.
Org Biomol Chem ; 20(3): 553-557, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34932056

ABSTRACT

The indolyl-4(3H)-quinazolinone core is an important structural motif in functional molecules. However, few methods exist for its direct modification, which limits its potential application. Reported herein is a palladium-mediated amination of halogen-containing indolyl-4(3H)-quinazolinones with a variety of primary and secondary amines via the corresponding palladium oxidative addition complexes. The protocol allows the facile synthesis of indolyl-4(3H)-quinazolinone derivatives with amino groups at all the positions of the benzene ring in moderate to good yields with mild reaction conditions and good functional group tolerance. Furthermore, the antitumor activity of these products was evaluated.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Palladium/pharmacology , Quinazolinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Oxidation-Reduction , Palladium/chemistry , Quinazolinones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...