Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 178: 106412, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38838394

ABSTRACT

Memristors are of great theoretical and practical significance for chaotic dynamics research of brain-like neural networks due to their excellent physical properties such as brain synapse-like memorability and nonlinearity, especially crucial for the promotion of AI big models, cloud computing, and intelligent systems in the artificial intelligence field. In this paper, we introduce memristors as self-connecting synapses into a four-dimensional Hopfield neural network, constructing a central cyclic memristive neural network (CCMNN), and achieving its effective control. The model adopts a central loop topology and exhibits a variety of complex dynamic behaviors such as chaos, bifurcation, and homogeneous and heterogeneous coexisting attractors. The complex dynamic behaviors of the CCMNN are investigated in depth numerically by equilibrium point stability analysis as well as phase trajectory maps, bifurcation maps, time-domain maps, and LEs. It is found that with the variation of the internal parameters of the memristor, asymmetric heterogeneous attractor coexistence phenomena appear under different initial conditions, including the multi-stable coexistence behaviors of periodic-periodic, periodic-stable point, periodic-chaotic, and stable point-chaotic. In addition, by adjusting the structural parameters, a wide range of amplitude control can be realized without changing the chaotic state of the system. Finally, based on the CCMNN model, an adaptive synchronization controller is designed to achieve finite-time synchronization control, and its application prospect in simple secure communication is discussed. A microcontroller-based hardware circuit and NIST test are conducted to verify the correctness of the numerical results and theoretical analysis.

2.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37499247

ABSTRACT

The memristor's unique memory function and non-volatile nature make it an ideal electronic bionic device for artificial neural synapses. This paper aims to construct a class of memristive neural networks (MNNs) with a simple circular connection relationship and complex dynamics by introducing a generic memristor as synapse. For placing the memristive synapse in different coupling positions, three MNNs with the same coupling cyclic connection are yielded. One remarkable feature of the proposed MNNs is that they can yield complex dynamics, in particular, abundant coexisting attractors and large-scale parameter-relied amplitude control, by comparing with some existing MNNs. Taking one of the MNNs as an example, the complex dynamics (including chaos, period-doubling bifurcation, symmetric coexisting attractors, large-scale amplitude control) and circuit implementation are studied . The number of equilibria and their stabilities are discussed. The parameter-relied dynamic evolution and the coexisting attractors are numerically shown by using bifurcations and phase portraits. A microcontroller-based hardware circuit is given to realize the network, which verifies the correctness of the numerical results and experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...