Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nature ; 629(8011): 286, 2024 May.
Article in English | MEDLINE | ID: mdl-38714811
2.
Eat Weight Disord ; 29(1): 37, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743203

ABSTRACT

BACKGROUND: Amidst growing evidence of the intricate link between physical and mental health, this study aims to dissect the relationship between the waist-to-weight index (WWI) and suicidal ideation within a representative sample of the US population, proposing WWI as a novel metric for suicide risk assessment. METHODS: The study engaged a sample of 9500 participants in a cross-sectional design. It employed multivariate logistic and linear regression analyses to probe the association between WWI and suicidal ideation. It further examined potential nonlinear dynamics using a weighted generalized additive model alongside stratified analyses to test the relationship's consistency across diverse demographic and health variables. RESULTS: Our analysis revealed a significant positive correlation between increased WWI and heightened suicidal ideation, characterized by a nonlinear relationship that persisted in the adjusted model. Subgroup analysis sustained the association's uniformity across varied population segments. CONCLUSIONS: The study elucidates WWI's effectiveness as a predictive tool for suicidal ideation, underscoring its relevance in mental health evaluations. By highlighting the predictive value of WWI, our findings advocate for the integration of body composition considerations into mental health risk assessments, thereby broadening the scope of suicide prevention strategies.


Subject(s)
Body Weight , Nutrition Surveys , Suicidal Ideation , Humans , Female , Male , Adult , Middle Aged , Cross-Sectional Studies , Young Adult , Waist Circumference , Adolescent , Aged , Body Mass Index , Risk Factors , Risk Assessment , United States/epidemiology
7.
Bioengineering (Basel) ; 11(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38534549

ABSTRACT

The gait recognition of exoskeletons includes motion recognition and gait phase recognition under various road conditions. The recognition of gait phase is a prerequisite for predicting exoskeleton assistance time. The estimation of real-time assistance time is crucial for the safety and accurate control of lower-limb exoskeletons. To solve the problem of predicting exoskeleton assistance time, this paper proposes a gait recognition model based on inertial measurement units that combines the real-time motion state recognition of support vector machines and phase recognition of long short-term memory networks. A recognition validation experiment was conducted on 30 subjects to determine the reliability of the gait recognition model. The results showed that the accuracy of motion state and gait phase were 99.98% and 98.26%, respectively. Based on the proposed SVM-LSTM gait model, exoskeleton assistance time was predicted. A test was conducted on 10 subjects, and the results showed that using assistive therapy based on exercise status and gait stage can significantly improve gait movement and reduce metabolic costs by an average of more than 10%.

8.
Front Plant Sci ; 15: 1331443, 2024.
Article in English | MEDLINE | ID: mdl-38533399

ABSTRACT

Plants interact with complex microbial communities in which microorganisms play different roles in plant development and health. While certain microorganisms may cause disease, others promote nutrient uptake and resistance to stresses through a variety of mechanisms. Developing plant protection measures requires a deeper comprehension of the factors that influence multitrophic interactions and the organization of phyllospheric communities. High-throughput sequencing was used in this work to investigate the effects of climate variables and bacterial wildfire disease on the bacterial community's composition and assembly in the phyllosphere of tobacco (Nicotiana tabacum L.). The samples from June (M1), July (M2), August (M3), and September (M4) formed statistically separate clusters. The assembly of the whole bacterial population was mostly influenced by stochastic processes. PICRUSt2 predictions revealed genes enriched in the M3, a period when the plant wildfire disease index reached climax, were associated with the development of the wildfire disease (secretion of virulence factor), the enhanced metabolic capacity and environmental adaption. The M3 and M4 microbial communities have more intricate molecular ecological networks (MENs), bursting with interconnections within a densely networked bacterial population. The relative abundances of plant-beneficial and antagonistic microbes Clostridiales, Bacillales, Lactobacillales, and Sphingobacteriales, showed significant decrease in severally diseased sample (M3) compared to the pre-diseased samples (M1/M2). Following the results of MENs, we further test if the correlating bacterial pairs within the MEN have the possibility to share functional genes and we have unraveled 139 entries of such horizontal gene transfer (HGT) events, highlighting the significance of HGT in shaping the adaptive traits of plant-associated bacteria across the MENs, particularly in relation to host colonization and pathogenicity.

9.
J Contam Hydrol ; 262: 104326, 2024 03.
Article in English | MEDLINE | ID: mdl-38452418

ABSTRACT

The migration behavior of pollutants is affected by consolidation and temperature when using thermal desorption technology to clean contaminated sites. Based on a one-dimensional consolidation model for unsaturated soil and the traditional heat conduction equation, a pollutant transport model accounting for the combined effects of consolidation and temperature was established in this paper. An analytical solution was obtained by using the separation of variables method and the integral transformation method. In addition, the correctness of the proposed model was verified via a comparison between the existing analytical solution and the theoretical model. Finally, adopting benzene as the research object, the influence of different factors on pollutant migration was studied. It was found that the growth rate of the pollutant concentration increased with increasing consolidation pressure, and the final pollutant concentration decreased with increasing consolidation pressure. The pollutant concentration increment due to temperature first increased and then decreased with increasing migration distance. The higher the Soret coefficient and volumetric moisture content are, the higher the pollutant concentration.


Subject(s)
Environmental Pollutants , Soil Pollutants , Soil , Temperature , Soil Pollutants/analysis , Models, Theoretical
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 160-167, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38403617

ABSTRACT

Assisting immobile individuals with regular repositioning to adjust pressure distribution on key prominences such as the back and buttocks is the most effective measure for preventing pressure ulcers. However, compared to active self-repositioning, passive assisted repositioning results in distinct variations in force distribution on different body parts. This incongruity can affect the comfort of repositioning and potentially lead to a risk of secondary injury, for certain trauma or critically ill patients. Therefore, it is of considerable practical importance to study the passive turning comfort and the optimal turning strategy. Initially, in this study, the load-bearing characteristics of various joints during passive repositioning were examined, and a wedge-shaped airbag configuration was proposed. The airbags coupled layout on the mattress was equivalently represented as a spring-damping system, with essential model parameters determined using experimental techniques. Subsequently, different assisted repositioning strategies were devised by adjusting force application positions and sequences. A human-mattress force-coupled simulation model was developed based on rigid human body structure and equivalent flexible springs. This model provided the force distribution across the primary pressure points on the human body. Finally, assisted repositioning experiments were conducted with 15 participants. The passive repositioning effectiveness and pressure redistribution was validated based on the simulation results, experimental data, and questionnaire responses. Furthermore, the mechanical factors influencing comfort during passive assisted repositioning were elucidated, providing a theoretical foundation for subsequent mattress design and optimization of repositioning strategies.


Subject(s)
Pressure Ulcer , Humans , Pressure Ulcer/prevention & control , Beds
11.
Adv Mater ; 36(14): e2311990, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154086

ABSTRACT

Along with the development of nuclear power, concerns about radioactive emissions and the potential for nuclear leakage have been widely raised, particularly of harmful iodine isotopes. However, as a significant component of nuclear air waste, the enrichment and detection of air-dispersed gaseous iodine remain a challenge. In this work, it is focused on developing an attraction-immobilization-detection strategy-based fluorescence method for the on-site detection of volatile iodine, by employing a photoluminescent ionic polyimine network-polyvinylpyrrolidone (IPIN-PVP) composite membrane. This strategy synergizes ion-induced dipole interactions from IPIN and complexation effects from PVP, allowing effective iodine enrichment and immobilization. As a result, the optimized IPIN-PVP membrane exhibits rapid response times of 5 s and a low detection limit of 4.087 × 10-8 m for gaseous iodine. It also introduces a portable handheld detection device that utilizes the composite membrane, offering a practical solution for real-time on-site detection of volatile iodine. This innovation enhances nuclear safety measures and disaster management by providing rapid and reliable iodine detection capabilities.

12.
Bioengineering (Basel) ; 10(12)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38135935

ABSTRACT

Gait models are important for the design and control of lower limb exoskeletons. The inverted pendulum model has advantages in simplicity and computational efficiency, but it also has the limitations of oversimplification and lack of realism. This paper proposes a two-degrees-of-freedom (DOF) inverted pendulum walking model by considering the knee joints for describing the characteristics of human gait. A new parameter, roll factor, is defined to express foot function in the model, and the relationships between the roll factor and gait parameters are investigated. Experiments were conducted to verify the model by testing seven healthy adults at different walking speeds. The results demonstrate that the roll factor has a strong relationship with other gait kinematics parameters, so it can be used as a simple parameter for expressing gait kinematics. In addition, the roll factor can be used to identify walking styles with high accuracy, including small broken step walking at 99.57%, inefficient walking at 98.14%, and normal walking at 99.43%.

13.
IEEE Trans Haptics ; 16(4): 848-860, 2023.
Article in English | MEDLINE | ID: mdl-37956002

ABSTRACT

The human hand interacts with the environment via physical contact, and tactile information is closely associated with finger movement patterns. Studying the relationship between motor primitives of the finger and the corresponding tactile feedback provides valuable insight into the nature of touch and informs the simulation of humanoid tactile. This research decomposed finger contact into three fundamental motor primitives: contact-on, stick-to-slip, and full slip, then examined the tactile features associated with each motor primitive, including the center of mass (COM) and the centroid of the contact pressure distribution matrix and the total contact area. The change in fingertip contact area during contact-on was in accordance with a first-order kinetic model. In the stick-to-slip, there was a generalized linear relationship between the fingertip skin stretch and the magnitude of the tangential force. Moreover, the skin stretch of the fingertip mirrored the direction of the motion. During the full slip, the COM's movement effectively represented the direction of the tangential force, with an error margin of no more than five degrees. Experiments showed that certain fingertip motions can be portrayed, transmitted, and replicated using tactile information. This research opens potential avenues for remote immersive physical communication in robotics and other related fields.


Subject(s)
Touch Perception , Touch , Humans , Upper Extremity , Fingers , Movement
14.
Appl Opt ; 62(17): 4439-4454, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37707135

ABSTRACT

This paper presents a depth simulation imaging and depth image super-resolution (SR) method for two-dimensional/three-dimensional compatible CMOS image sensors. A depth perception model is established to analyze the effects of depth imaging parameters and evaluate the real imaging effects. We verify its validity by analyzing the depth error, imaging simulation, and auxiliary physical verification. By means of the depth simulation images, we then propose a depth SR reconstruction algorithm to recover the low-resolution depth maps to the high-resolution depth maps in two types of datasets. With the best situation in depth accuracy kept, the root mean square error (RMSE) of Middlebury dataset images are 0.0156, 0.0179, and 0.0183 m. The RMSE of RGB-D dataset images are 0.0223 and 0.0229 m. Compared with other listed conventional algorithms, our algorithm reduces the RMSE by more than 16.35%, 17.19%, and 23.90% in the Middlebury dataset images. Besides, our algorithm reduces the RMSE by more than 9.71% and 8.76% in the RGB-D dataset images. The recovery effects achieve optimized results.

15.
Sci Rep ; 13(1): 14261, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653334

ABSTRACT

In previous studies, the numerical modeling and analyzing methods onto industrial or vehicle airbags dynamics were revealed to have high accuracy regarding their actual dynamic properties, but there are scarcely airbag stiffness modeling and comfortableness investigations of nursing cushion or mattress airbags. This study constructs a numerical model illustrating the association between the stiffness property and the internal gas mass of the wedge-shaped airbag of nursing appliance, and then the airbag stiffness variation discipline is described based on various inflation volumes. To start with, based on an averaged pressure prerequisite, a dynamic simulation model of the wedge-shaped airbag is established by the fluid cavity approach. For this modeling, the elastic mechanical behaviors of airbag material are determined according to a material constitutive model built by the quasi-static uniaxial tensile test. Besides, verification experiments clarify that the presented modeling method is accurate for airbag stiffness behavior prediction, and then can be effectively applied into design and optimization phases of wedge-shaped airbags. Ultimately, based on the simulation and experimental results, it is found that the wedge-shaped airbag stiffness exhibits a three stages characteristic evolution with the gas mass increase. Then the mathematical relationship between the airbag stiffness and gas mass is obtained by numerical fitting, which provides a vital basis for structural optimization and differentiated control of nursing equipment airbags.

16.
Mater Today Bio ; 22: 100756, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37593218

ABSTRACT

Indigo naturalis (IN) has been extensively used as a topical treatment for psoriasis. However, clinical applications of IN in ointment were hampered by its limited transdermal efficiency and dark stains. To address the aforementioned issues, nanopatches carrying IN were fabricated using poly(ε-caprolactone, PCL)/poly(ethylene oxide, PEO) and topically applied to psoriasiform skin. The ideal ratio of 5% PCL/PEO was established to be 80:20 (w/w), and 15% IN as payload was confirmed. Investigations on the three principal active components of IN release indicated that indirubin and tryptanthrin were released in bursts, while indigo was released in a limited and controlled manner. Further biological analyses confirmed a favorable biocompatibility of amphiphilic IN-PCL/PEO, which coincided with the intended therapeutic outcomes as measured by severity index scoring and pathological evaluations in vivo. The advantages of IN as nanopatches over ointment could be due to improved transdermal distribution of indirubin and tryptanthrin, resulting in effective management of epidermal hyperplasia and blood vessel remodeling. Meanwhile, due to the lower preservation of epidermal indigo, IN-PCL/PEO nanopatches caused no skin coloration. Similarly, during a 4-week topical treatment of IN-PCL/PEO nanopatches, the safety and anti-psoriatic benefits were obtained in an initial human test. The conversion of IN from topical cream to electrospun nanofibers opens up new avenues for bench-to-bedside translation of this herbal therapy and provides mechanistic insight into IN's roles in the management of psoriasis.

17.
Bioengineering (Basel) ; 10(8)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37627788

ABSTRACT

In-home elderly care faces a crucial challenge regarding mobility among essential assistive devices, for which dual-arm care robots present a viable solution. However, ensuring human comfort in human-robot interactions necessitate quantifiable standards. Currently, the field lacks accurate biomechanical model solutions and objective comfort evaluation. In response to this need, this study proposes a method for solving human-robot statics models based on real-time pressure and position information. Employing the Optitrack motion capture system and Tekscan pressure sensors, we collect real-time positional and pressure data. This information is then incorporated into our human-robot statics model, facilitating the instantaneous calculation of forces and moments within the human body's sagittal plane. Building on this, comprehensive research literature review and meticulous questionnaire surveys are conducted to establish a comprehensive comfort evaluation function. To validate this function, experiments are performed to enable real-time assessment of comfort levels experienced during the process of transferring the human body. Additionally, the Noraxon surface electromyography (sEMG) sensors are utilized to capture real-time sEMG signals from the erector spinae, adductor muscles and quadratus lumborum, thereby providing objective validation for the comfort evaluation function. The experimental findings demonstrate that the proposed methodology for evaluating comfort achieves an accuracy rate of 85.1%.

18.
Front Endocrinol (Lausanne) ; 14: 1133260, 2023.
Article in English | MEDLINE | ID: mdl-37576957

ABSTRACT

Background and objective: Uterine leiomyoma is the most common benign tumor in females of reproductive age. However, its causes have never been fully understood. The objective of our study was to analyze the causal association between various factors and uterine leiomyoma using Mendelian randomization (MR). Methods: Genetic variables associated with risk factors were obtained from genome-wide association studies. Summary-level statistical data for uterine leiomyoma were obtained from FinnGen and the UK Biobank (UKB) consortium. We used inverse variance weighted, MR-Egger, and weighted median methods in univariate analysis. Multivariable MR analysis was used to identify independent risk factors. A fixed-effect model meta-analysis was used to combine the results of the FinnGen and UKB data. Results: In the FinnGen data, higher genetically predicted age at natural menopause, systolic blood pressure (SBP), diastolic blood pressure (DBP), and fasting insulin were associated with an increased risk of uterine leiomyoma, while higher age at menarche was associated with a reduced risk of uterine leiomyoma. Multivariable MR analysis of SBP and DBP showed that higher DBP might be an independent risk factor of uterine leiomyoma. In the UKB data, the results for age at natural menopause, SBP, DBP, and age at menarche were replicated. The result of the meta-analysis suggested that uterine leiomyoma could also be affected by polycystic ovary syndrome (PCOS), endometriosis, and 2-hour glucose level. Conclusion: Our MR study confirmed that earlier menstrual age, hypertension, obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine leiomyoma, and the causal relationship between smoking and uterine leiomyoma was ruled out. In addition, later age of menopause and endometriosis were found to increase the risk of uterine leiomyoma, while PCOS was found to decrease the risk.


Subject(s)
Endometriosis , Leiomyoma , Polycystic Ovary Syndrome , Female , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Leiomyoma/epidemiology , Leiomyoma/genetics , Glucose
19.
Phytomedicine ; 118: 154942, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421767

ABSTRACT

BACKGROUND: The continuous evolution of SARS-CoV-2 has underscored the development of broad-spectrum prophylaxis. Antivirals targeting the membrane fusion process represent promising paradigms. Kaempferol (Kae), an ubiquitous plant flavonol, has been shown efficacy against various enveloped viruses. However, its potential in anti-SARS-CoV-2 invasion remains obscure. PURPOSE: To evaluate capabilities and mechanisms of Kae in preventing SARS-CoV-2 invasion. METHODS: To avoid interference of viral replication, virus-like particles (VLPs) constructed with luciferase reporter were applied. To investigate the antiviral potency of Kae, human induced pluripotent stem cells (hiPSC)-derived alveolar epithelial cells type II (AECII) and human ACE2 (hACE2) transgenic mice were utilized as in vitro and in vivo models, respectively. Using dual split protein (DSP) assays, inhibitory activities of Kae in viral fusion were determined in Alpha, Delta and Omicron variants of SARS-CoV-2, as well as in SARS-CoV and MERS-CoV. To further reveal molecular determinants of Kae in restricting viral fusion, synthetic peptides corresponding to the conserved heptad repeat (HR) 1 and 2, involved in viral fusion, and the mutant form of HR2 were explored by circular dichroism and native polyacrylamide gel electrophoresis. RESULTS: Kae inhibited SARS-CoV-2 invasion both in vitro and in vivo, which was mainly attributed to its suppressive effects on viral fusion, but not endocytosis, two pathways that mediate viral invasion. In accordance with the proposed model of anti-fusion prophylaxis, Kae functioned as a pan-inhibitor of viral fusion, including three emerged highly pathogenic coronaviruses, and the currently circulating Omicron BQ.1.1 and XBB.1 variants of SARS-CoV-2. Consistent with the typical target of viral fusion inhibitors, Kae interacted with HR regions of SARS-CoV-2 S2 subunits. Distinct from previous inhibitory fusion peptides which prevent the formation of six-helix bundle (6-HB) by competitively interacting with HRs, Kae deformed HR1 and directly reacted with lysine residues within HR2 region, the latter of which was considered critical for the preservation of stabilized S2 during SARS-CoV-2 invasion. CONCLUSIONS: Kae prevents SARS-CoV-2 infection by blocking membrane fusion and possesses a broad-spectrum anti-fusion ability. These findings provide valuable insights into potential benefits of Kae-containing botanical products as a complementary prophylaxis, especially during the waves of breakthrough infections and re-infections.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Mice , Animals , Humans , SARS-CoV-2 , Amino Acid Sequence , Kaempferols/pharmacology , Spike Glycoprotein, Coronavirus , Induced Pluripotent Stem Cells/metabolism , Peptides/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
20.
Food Funct ; 14(14): 6665-6677, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37403543

ABSTRACT

As powerful bioactive compounds found in a variety of plant-based foods, (epi)catechins have been identified to be associated with an abundant array of health benefits. While their adverse impacts have also been gaining increasing attention, their intestinal impact is still unclear. In this study, intestinal organoids were used as an in vitro model to analyze the effects of four (epi)catechins on the development of the intestinal epithelial structure. Morphological characteristics, oxidative stress, and endoplasmic reticulum (ER) stress assays with (epi)catechins treatment showed that (epi)catechins promoted intestinal epithelial apoptosis and stress response. These effects had dose-dependent and structural differences (EGCG > EGC > ECG > EC). Furthermore, GSK2606414, a protein kinase RNA (PKR)-like ER kinase (PERK) pathway inhibitor, confirmed that the PERK-eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP-homologous protein (CHOP) pathway is closely related to the damage. In addition, the results for the intestinal inflammatory mouse model further verified that (epi)catechins significantly delayed intestinal repair. Taken together, these findings revealed that overdosage of (epi)catechins has damage potential on the intestinal epithelium and may increase the risk of intestinal damage.


Subject(s)
Catechin , Endoplasmic Reticulum Stress , Intestinal Mucosa , Oxidative Stress , Catechin/pharmacology , Animals , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/physiopathology , Eukaryotic Initiation Factor-2 , Organoids/drug effects , Male , Mice, Inbred BALB C , Signal Transduction , Enteritis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...