Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 147: 107405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696843

ABSTRACT

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Subject(s)
Macular Degeneration , Peptides, Cyclic , Receptors, CCR3 , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Apoptosis/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...