Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
2.
Sci China Life Sci ; 66(8): 1869-1887, 2023 08.
Article in English | MEDLINE | ID: mdl-37059927

ABSTRACT

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteins , Protein Binding
3.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1453-1463, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36239351

ABSTRACT

Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed. In addition, previous studies have suggested that sitagliptin may have pleiotropic effects other than treating T2DM. These pieces of evidence point to the importance of further investigation of the molecular mechanisms of sitagliptin, starting from the identification of sitagliptin-binding proteins. In this study, by combining affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), we discover seven high-confidence targets that can interact with sitagliptin. Surface plasmon resonance (SPR) assay confirms the binding of sitagliptin to three proteins, i. e., LYPLAL1, TCP1, and CCAR2, with binding affinities (K D) ranging from 50.1 µM to 1490 µM. Molecular docking followed by molecular dynamic (MD) simulation reveals hydrogen binding between sitagliptin and the catalytic triad of LYPLAL1, and also between sitagliptin and the P-loop of ATP-binding pocket of TCP1. Molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis indicates that sitagliptin can stably bind to LYPLAL1 and TCP1 in active sites, which may have an impact on the functions of these proteins. SPR analysis validates the binding affinity of sitagliptin to TCP1 mutant D88A is ~10 times lower than that to the wild-type TCP1. Our findings provide insights into the sitagliptin-targets interplay and demonstrate the potential of sitagliptin in regulating gluconeogenesis and in anti-tumor drug development.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Sitagliptin Phosphate , Humans , Adaptor Proteins, Signal Transducing , Carrier Proteins , Diabetes Mellitus, Type 2/chemically induced , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Sitagliptin Phosphate/pharmacology
5.
J Adv Res ; 36: 133-145, 2022 02.
Article in English | MEDLINE | ID: mdl-35116173

ABSTRACT

Introduction: The COVID-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for early predicting the outcome of COVID-19. Growing evidences have revealed that SARS-CoV-2 specific antibodies evolved with disease progression and severity in COIVD-19 patients. Objectives: We assumed that antibodies may serve as biomarkers for predicting the clinical outcome of hospitalized COVID-19 patients on admission. Methods: By taking advantage of a newly developed SARS-CoV-2 proteome microarray, we surveyed IgG responses against 20 proteins of SARS-CoV-2 in 1034 hospitalized COVID-19 patients on admission and followed till 66 days. The microarray results were further correlated with clinical information, laboratory test results and patient outcomes. Cox proportional hazards model was used to explore the association between SARS-CoV-2 specific antibodies and COVID-19 mortality. Results: Nonsurvivors (n = 955) induced higher levels of IgG responses against most of non-structural proteins than survivors (n = 79) on admission. In particular, the magnitude of IgG antibodies against 8 non-structural proteins (NSP1, NSP4, NSP7, NSP8, NSP9, NSP10, RdRp, and NSP14) and 2 accessory proteins (ORF3b and ORF9b) possessed significant predictive power for patient death, even after further adjustments for demographics, comorbidities, and common laboratory biomarkers for disease severity (all with p trend < 0.05). Additionally, IgG responses to all of these 10 non-structural/accessory proteins were also associated with the severity of disease, and differential kinetics and serum positive rate of these IgG responses were confirmed in COVID-19 patients of varying severities within 20 days after symptoms onset. The area under curves (AUCs) for these IgG responses, determined by computational cross-validations, were between 0.62 and 0.71. Conclusions: Our findings might have important implications for improving clinical management of COVID-19 patients.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index
6.
Genomics Proteomics Bioinformatics ; 19(5): 669-678, 2021 10.
Article in English | MEDLINE | ID: mdl-34748989

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (named COVID-ONE-hi). COVID-ONE-hi is based on the data that contain the IgG/IgM responses to 24 full-length/truncated proteins corresponding to 20 of 28 known SARS-CoV-2 proteins and 199 spike protein peptides against 2360 serum samples collected from 783 COVID-19 patients. In addition, 96 clinical parameters for the 2360 serum samples and basic information for the 783 patients are integrated into the database. Furthermore, COVID-ONE-hi provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-hi is freely available at www.COVID-ONE.cn.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2
7.
Cell Discov ; 7(1): 67, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34400612

ABSTRACT

One of the best ways to control COVID-19 is vaccination. Among the various SARS-CoV-2 vaccines, inactivated virus vaccines have been widely applied in China and many other countries. To understand the underlying protective mechanism of these vaccines, it is necessary to systematically analyze the humoral responses that are triggered. By utilizing a SARS-CoV-2 microarray with 21 proteins and 197 peptides that fully cover the spike protein, antibody response profiles of 59 serum samples collected from 32 volunteers immunized with the inactivated virus vaccine BBIBP-CorV were generated. For this set of samples, the microarray results correlated with the neutralization titers of the authentic virus, and two peptides (S1-5 and S2-22) were identified as potential biomarkers for assessing the effectiveness of vaccination. Moreover, by comparing immunized volunteers to convalescent and hospitalized COVID-19 patients, the N protein, NSP7, and S2-78 were identified as potential biomarkers for differentiating COVID-19 patients from individuals vaccinated with the inactivated SARS-CoV-2 vaccine. The comprehensive profile of humoral responses against the inactivated SARS-CoV-2 vaccine will facilitate a deeper understanding of the vaccine and provide potential biomarkers for inactivated virus vaccine-related applications.

8.
Cell Rep ; 36(2): 109391, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34242574

ABSTRACT

The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Nonstructural Proteins/immunology , Viral Regulatory and Accessory Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Antibody Formation , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Protein Array Analysis
9.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1134-1141, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34159380

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health threat since December 2019, and there is still no highly effective drug to control the pandemic. To facilitate drug target identification for drug development, studies on molecular mechanisms, such as SARS-CoV-2 protein interactions, are urgently needed. In this study, we focused on Nsp2, a non-structural protein with largely unknown function and mechanism. The interactome of Nsp2 was revealed through the combination of affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), and 84 proteins of high-confidence were identified. Gene ontology analysis demonstrated that Nsp2-interacting proteins are involved in several biological processes such as endosome transport and translation. Network analysis generated two clusters, including ribosome assembly and vesicular transport. Bio-layer interferometry (BLI) assay confirmed the bindings between Nsp2- and 4-interacting proteins, i.e. STAU2 (Staufen2), HNRNPLL, ATP6V1B2, and RAP1GDS1 (SmgGDS), which were randomly selected from the list of 84 proteins. Our findings provide insights into the Nsp2-host interplay and indicate that Nsp2 may play important roles in SARS-CoV-2 infection and serve as a potential drug target for anti-SARS-CoV-2 drug development.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Drug Delivery Systems , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Protein Binding , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Viral Nonstructural Proteins/metabolism
10.
Cell Rep ; 34(13): 108915, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33761319

ABSTRACT

To fully decipher the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein, it is essential to assess which part is highly immunogenic in a systematic way. We generate a linear epitope landscape of the Spike protein by analyzing the serum immunoglobulin G (IgG) response of 1,051 coronavirus disease 2019 (COVID-19) patients with a peptide microarray. We reveal two regions rich in linear epitopes, i.e., C-terminal domain (CTD) and a region close to the S2' cleavage site and fusion peptide. Unexpectedly, we find that the receptor binding domain (RBD) lacks linear epitope. We reveal that the number of responsive peptides is highly variable among patients and correlates with disease severity. Some peptides are moderately associated with severity and clinical outcome. By immunizing mice, we obtain linear-epitope-specific antibodies; however, no significant neutralizing activity against the authentic virus is observed for these antibodies. This landscape will facilitate our understanding of SARS-CoV-2-specific humoral responses and might be useful for vaccine refinement.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/genetics , China/epidemiology , Disease Models, Animal , Epitope Mapping/methods , Epitopes/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Cell Mol Immunol ; 18(3): 621-631, 2021 03.
Article in English | MEDLINE | ID: mdl-33483707

ABSTRACT

Serological tests play an essential role in monitoring and combating the COVID-19 pandemic. Recombinant spike protein (S protein), especially the S1 protein, is one of the major reagents used for serological tests. However, the high cost of S protein production and possible cross-reactivity with other human coronaviruses pose unavoidable challenges. By taking advantage of a peptide microarray with full spike protein coverage, we analyzed 2,434 sera from 858 COVID-19 patients, 63 asymptomatic patients and 610 controls collected from multiple clinical centers. Based on the results, we identified several S protein-derived 12-mer peptides that have high diagnostic performance. In particular, for monitoring the IgG response, one peptide (aa 1148-1159 or S2-78) exhibited a sensitivity (95.5%, 95% CI 93.7-96.9%) and specificity (96.7%, 95% CI 94.8-98.0%) comparable to those of the S1 protein for the detection of both symptomatic and asymptomatic COVID-19 cases. Furthermore, the diagnostic performance of the S2-78 (aa 1148-1159) IgG was successfully validated by ELISA in an independent sample cohort. A panel of four peptides, S1-93 (aa 553-564), S1-97 (aa 577-588), S1-101 (aa 601-612) and S1-105 (aa 625-636), that likely will avoid potential cross-reactivity with sera from patients infected by other coronaviruses was constructed. The peptides identified in this study may be applied independently or in combination with the S1 protein for accurate, affordable, and accessible COVID-19 diagnosis.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Adult , Aged , Female , Humans , Male , Middle Aged , Peptides/chemistry , Spike Glycoprotein, Coronavirus/metabolism
13.
Allergy ; 76(2): 551-561, 2021 02.
Article in English | MEDLINE | ID: mdl-33040337

ABSTRACT

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Carrier State/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing/methods , Carrier State/blood , Carrier State/diagnosis , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged
14.
Cell Mol Immunol ; 17(10): 1095-1097, 2020 10.
Article in English | MEDLINE | ID: mdl-32895485
15.
EBioMedicine ; 53: 102674, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32113159

ABSTRACT

BACKGROUND: Autoantibodies against tumor associated antigens are highly related to cancer progression. Autoantibodies could serve as indicators of tumor burden, and have the potential to monitor the response of treatment and tumor recurrence. However, how the autoantibody repertoire changes in response to cancer treatment are largely unknown. METHODS: Sera of five lung adenocarcinoma patients before and after surgery, were collected longitudinally. These sera were analyzed on a human proteome microarray of 20,240 recombinant proteins to acquire dynamic autoantibody repertoire in response to surgery, as well as to identify the antigens with decreased antibody response after tumor excision or surgery, named as surgery-associated antigens. The identified candidate antigens were then used to construct focused microarray and validated by longitudinal sera collected from a variety of time points of the same patient and a larger cohort of 45 sera from lung adenocarcinoma patients. FINDINGS: The autoantibody profiles are highly variable among patients. Meanwhile, the autoantibody profiles of the sera from the same patient were surprisingly stable for at least 3 months after surgery. Six surgery-associated antigens were identified and validated. All the five patients have at least one surgery-associated antigen, demonstrating this type of biomarkers is prevalent, while specific antigens are poorly shared among individuals. The prevalence of each antigen is 2%-14% according to the test with a larger cohort. INTERPRETATION: To our knowledge, this is the first study of dynamically profiling of autoantibody repertoires before/after surgery of cancer patients. The high prevalence of surgery-associated antigens implies the possible broad application for monitoring of tumor recurrence in population, while the low prevalence of specific antigens allows personalized medicine. After the accumulation and analysis of more longitudinal samples, the surgery-associated serum biomarkers, combined as a panel, may be applied to alarm the recurrence of tumor in a personalized manner. FUNDING: Research supported by grants from National Key Research and Development Program of China Grant (No. 2016YFA0500600), National Natural Science Foundation of China (No. 31970130, 31600672, 31670831, and 31370813), Open Foundation of Key Laboratory of Systems Biomedicine (No. KLSB2017QN-01), Science and Technology Commission of Shanghai Municipality Medical Guidance Science &Technology Support Project (16411966100), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20172005), Shanghai Municipal Commission of Health and Family Planning Outstanding Academic Leaders Training Program (2017BR055) and National Natural Science Foundation of China (81871882).


Subject(s)
Adenocarcinoma of Lung/immunology , Antibodies, Neoplasm/immunology , Autoantibodies/immunology , Biomarkers, Tumor/immunology , Lung Neoplasms/immunology , Neoplasm Recurrence, Local/immunology , Postoperative Complications/immunology , Adenocarcinoma of Lung/blood , Adenocarcinoma of Lung/surgery , Antibodies, Neoplasm/blood , Autoantibodies/blood , Biomarkers, Tumor/blood , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/surgery , Male , Middle Aged , Neoplasm Recurrence, Local/blood , Postoperative Complications/blood , Pulmonary Surgical Procedures/adverse effects
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(5): 551-555, 2019 Oct 01.
Article in Chinese | MEDLINE | ID: mdl-31721507

ABSTRACT

Crown lengthening is one of the most common surgeries in clinical practice. Under the premise of ensuring the biologic width, the adequate crown is exposed by resecting the periodontal soft tissue and (or) hard tissue to meet the prosthodontic and (or) aesthetic requirements. Considering the various advantages of oral laser, such as safe, precise, minimally invasive and comfort, laser has become a promising technology which can be used to improve the traditional crown lengthening. In this review, the principles and characteristics of laser application in crown lengthening, especially in the minimally invasive or flapless crown lengthening will be reviewed. Its pros and cons will also be discussed.


Subject(s)
Crown Lengthening , Tooth , Crowns , Esthetics, Dental , Tooth Crown
17.
Mol Cell Proteomics ; 18(9): 1851-1863, 2019 09.
Article in English | MEDLINE | ID: mdl-31308251

ABSTRACT

Systemic lupus erythematosus (SLE) is one of the most serious autoimmune diseases, characterized by highly diverse clinical manifestations. A biomarker is still needed for accurate diagnostics. SLE serum autoantibodies were discovered and validated using serum samples from independent sample cohorts encompassing 306 participants divided into three groups, i.e. healthy, SLE patients, and other autoimmune-related diseases. To discover biomarkers for SLE, a phage displayed random peptide library (Ph.D. 12) and deep sequencing were applied to screen specific autoantibodies in a total of 100 serum samples from 50 SLE patients and 50 healthy controls. A statistical analysis protocol was set up for the identification of peptides as potential biomarkers. For validation, 10 peptides were analyzed using enzyme-linked immunosorbent assays (ELISA). As a result, four peptides (SLE2018Val001, SLE2018Val002, SLE2018Val006, and SLE2018Val008) were discovered with high diagnostic power to differentiate SLE patients from healthy controls. Among them, two peptides, i.e. SLE2018Val001 and SLE2018Val002, were confirmed between SLE with other autoimmune patients. The procedure we established could be easily adopted for the identification of autoantibodies as biomarkers for many other diseases.


Subject(s)
Lupus Erythematosus, Systemic/blood , Peptide Library , Peptides/blood , Adult , Area Under Curve , Autoimmune Diseases/blood , Biomarkers/blood , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Peptides/genetics , Reproducibility of Results
18.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 36(6): 681-685, 2018 12 01.
Article in Chinese | MEDLINE | ID: mdl-30593118

ABSTRACT

Periostin, a kind of matricellular protein highly expressed in periodontal ligament and periosteum, is an important regulator of the integrity of periodontal ligament and periodontitis processes. Periostin has been shown to play a positive role in the recovery of periodontitis. This paper reviews relevant literature about the role of periostin in periodontal tissue and periodontitis.


Subject(s)
Periodontal Ligament , Periodontitis , Humans , Periosteum
19.
Proteomics ; 18(23): e1800265, 2018 12.
Article in English | MEDLINE | ID: mdl-30281201

ABSTRACT

Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.


Subject(s)
Mycobacterium tuberculosis/metabolism , Proteome/analysis , Bacterial Proteins/metabolism , Humans , MAP Kinase Signaling System , Macrophages/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism
20.
Lab Chip ; 18(18): 2854-2864, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30105321

ABSTRACT

A pipette-actuated capillary array comb (PAAC) system operated on a smartphone-based hand-held device has been successfully developed for the multiplex detection of bacteria in a "sample-to-answer" manner. The PAAC consists of eight open capillaries inserted into a cylindrical plastic base with a piece of chitosan-modified glass filter paper embedded in each capillary. During the sample preparation, a PAAC was mounted into a 1 mL pipette tip with an enlarged opening and was operated with a 1 mL pipette for liquid handling. The cell lysate was drawn and expelled through the capillaries three times to facilitate the DNA capture on the embedded filter discs. Following washes with water, the loop-mediated isothermal amplification (LAMP) reagents were aspirated into the capillaries, in which the primers were pre-fixed with chitosan. After that, the PAAC was loaded into the smartphone-based device for a one-hour amplification at 65 °C and end-point detection of calcein fluorescence in the capillaries. The DNA capture efficiency of a 1.1 mm-diameter filter disc was determined to be 97% of λ-DNA and the coefficient of variation among the eight capillaries in the PAAC was only 2.2%. The multiplex detection of genomic DNA extracted from Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus provided limits of detection of 200, 500, and 500 copies, respectively, without any cross-contamination and cross reactions. "Sample-to-answer" detection of E. coli samples was successfully completed in 85 minutes, demonstrating a sensitivity of 200 cfu per capillary. The multiplex "sample-to-answer" detection, the streamlined operation, and the compact device should facilitate a broad range of applications of our PAAC system in point-of-care testing.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Nucleic Acid Amplification Techniques/instrumentation , Smartphone , Temperature , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...