Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 245: 120587, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37717335

ABSTRACT

The hybrid sludge-biofilm processes have been widely applied for the construction or upgradation of biological wastewater treatment process. Ecological mechanisms of biofilm development remain unclear in the hybrid ecosystem, because of the intricate interactive effects between sludge and biofilms. Herein, the establishment principles of biofilms with distinct coexisting sludge amounts were uncovered by varying sludge retention times (SRTs) from 5 to 40 days in the hybrid process. With the increasing of SRTs, biofilm biomass decreased with the increase of suspended sludge, resulting in lower biofilm proportion. As estimated by the Gompertz growth model, the increased sludge amounts (i.e., higher SRTs of 20 and 40 days) prolonged the initial colonization stage and decreased the specific development rate of biofilms when compared to lower sludge amounts with the shorter SRTs (i.e., 5 and 10 days). Null model analysis demonstrated that deterministic homogenous selection could facilitate the colonization and accumulation of biofilms with less coexisting sludge (SRT of 10 days). However, stochastic ecological drift and homogenizing dispersal dominated the colonization and accumulation stages of biofilms with more coexisting sludge (SRT of 20 days), respectively. The ecological networks reflected that positively-related taxa presented taxonomic relatedness, whereas high inconsistency of taxonomic relatedness was observed among aggregate forms or development stages as affected by varied SRTs. The high incidence of intra-taxa co-occurrence patterns suggested that taxa with similar ecological niches could be specifically selected in biofilms when being exposed with less coexisting sludge. This study uncovered ecological mechanisms of biofilm development driven by varying the SRTs of suspended sludge, which would help to propose appropriate strategies for the efficient start-up and optimization of the hybrid sludge-biofilm system.

2.
Sci Total Environ ; 873: 162448, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36828058

ABSTRACT

Elucidating community assembly and succession is crucial to understanding the ecosystem functioning. Herein, the ecological processes underpinning community assembly and succession were studied to uncover the respective ecological functions of attached biofilms and suspended biomass in a sequencing batch moving bed biofilm reactor. Compared with suspended biomass, attached biofilms presented higher relative abundances of Nitrospira (2.94 %) and Nitrosomonas (1.25 %), and contributed to 66.89 ± 11.37 % and 68.11 ± 12.72 % of nitrification and denitrification activities, respectively. The microbial source tracking result demonstrated that early formation of suspended biomass was dominated by the seeding effect of detached biofilms in the start-up period (days 0-30), while self-growth of previous suspended biomass was eventually outcompeted the seeding effect when the reactor stabilized (days 31-120). Null model and ecological network analysis further suggested distinctive ecological processes underpinning the differentiation between attached and suspended communities in the same reactor. Specifically, in the start-up period, positive interactions facilitated early formation of attached (73.84 %) and suspended communities (59.41 %), while homogenous selection (88.89 %) and homogenizing dispersal (65.71 %) governed assembly of attached and suspended communities, respectively. When the reactor stabilized, attached and suspended communities showed low composition turnover as reflected by dominant homogenizing dispersal, while they presented distinctive trends of interspecies interactions. This study sheds light on discrepant ecological processes governing community differentiation of attached biofilms and suspended biomass, which would provide ecological insights into the regulation of hybrid ecosystems.


Subject(s)
Biofilms , Ecosystem , Biomass , Nitrification , Bacteria , Bioreactors
3.
Biotechnol Bioeng ; 119(10): 2770-2783, 2022 10.
Article in English | MEDLINE | ID: mdl-35837838

ABSTRACT

Clarifying the essential succession dynamics of interspecies interactions during biofilm development is crucial for the regulation and application of biofilm-based processes. In this study, regular and time-series phylogenetic molecular ecological networks were constructed to investigate ordinary and time-lagged interspecies interactions during biofilm development in a moving bed biofilm reactor. Positive interactions dominated both regular (89.78%) and time-series (77.04%) ecological networks, suggesting that extensive cooperative behaviors facilitated biofilm development. The pronounced directional interactions (72.52%) in the time-series network further indicated that time-lagged interspecies interactions prevailed in the biofilm development process. Specifically, the proportion of directional negative interactions was higher than that of positive interactions, implying that interspecific competition preferred to be time-lagged. The time-series network revealed that module hubs exhibited extensive time-lagged positive interactions with their neighbors, and most of them exhibited altruistic behaviors. Keystone species possessing more positive interactions were positively correlated with biofilm biomass, NO3 - -N concentrations, and the removal efficiencies of NH4 + -N and chemical oxygen demand. However, keystone species and peripherals that were negatively targeted by their neighbors showed positive correlations with the concentrations of NO2 - -N, polysaccharides, and proteins in the soluble microbial products. The data highlight that the time-series network can provide directional microbial interactions along with the biofilm development process, which would help to predict the tendency of community shifts and propose efficient strategies for the regulation of biofilm-based processes.


Subject(s)
Biofilms , Bioreactors , Biological Oxygen Demand Analysis , Biomass , Phylogeny , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...