Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1379341, 2024.
Article in English | MEDLINE | ID: mdl-38596374

ABSTRACT

The objective of this study is to optimize the ultrasonic-assisted extraction process of Ku Shen (Sophorae Flavescentis Radix) extracts (KSE) against Vibrio parahaemolyticus and explore their anti-biofilm activity and mechanism of action. The ultrasonic-assisted extraction process of KSE optimized by single factor experiment, Box-Behnken design and response surface methodology was as follows: 93% ethanol as solvent, liquid/material ratio of 30 mL/g, ultrasonic power of 500 W, extraction temperature of 80°C and time of 30 min. Under these conditions, the diameter of inhibition circle of KSE was 15.60 ± 0.17 mm, which had no significant difference with the predicted value. The yield of dried KSE is 32.32 ± 0.57% and the content of total flavonoids in KSE was 57.02 ± 5.54%. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of KSE against V. parahaemolyticus were 0.25 and 0.5 mg/mL, respectively. Crystal violet staining, Congo red plate, spectrophotometry, CCK-8 and scanning electron microscopy were used to investigate the activity and mechanism of action of KSE against V. parahaemolyticus biofilm. The results showed that the sub-MIC of KSE could significantly inhibit biofilm formation, reduce the synthesis of polysaccharide intercellular adhesin (PIA) and the secretion of extracellular DNA. In addition, the inhibition rate of biofilm formation and clearance rate of mature biofilm of 1.0 mg/mL KSE were 85.32 and 74.04%, and the reduction rate of metabolic activity of developing and mature biofilm were 77.98 and 74.46%, respectively. These results were confirmed by visual images obtained by scanning electron microscopy. Therefore, KSE has the potential to further isolate the anti-biofilm agent and evaluate it for the preservation process of aquatic products.

2.
3 Biotech ; 12(6): 131, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35607390

ABSTRACT

This study aimed to investigate the antagonistic activity and mode of action of trypacidin from marine-derived Aspergillus fumigatus against Vibrio parahaemolyticus. Results indicated that the minimal inhibitory concentration and minimal bactericidal concentration of trypacidin against V. parahaemolyticus were 31.25 and 62.5 µg/mL, respectively, which was better than that of streptomycin sulfate. Trypacidin remarkably inhibited the growth of V. parahaemolyticus and had a strong destructive effect on cell wall permeability and integrity, cell membrane permeability, and morphological alterations. Its potential as an antibacterial agent for aquatic products must be further explored.

3.
Mar Drugs ; 20(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35447903

ABSTRACT

Antibiotic resistance and residues in aquaculture are a growing concern worldwide and consequently identifying favorable antibacterial compounds against aquatic pathogenic bacteria are gained more attention. Active compounds derived from marine microorganisms have shown great promise in this area. This review is aimed to make a comprehensive survey of anti-aquatic pathogenic bacterial compounds that were produced by marine microorganisms. A total of 79 compounds have been reported, covering literature from 1997 to 2021. The compounds are included in different structural classes such as polyketides, terpenoids, nitrogen compounds and others, and some of them present the potential to be developed into agents for the treatment of aquatic pathogenic bacteria.


Subject(s)
Aquatic Organisms , Polyketides , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Aquatic Organisms/chemistry , Bacteria/chemistry , Terpenes/chemistry
4.
3 Biotech ; 11(4): 193, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33927984

ABSTRACT

This study aimed to identify a symbiotic fungus strain HX-1 with anti-Vibrio harveyi activity and isolate and identify the active compound. The HX-1 strain was identified as Aspergillus fumigatus according to the morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The compound was isolated from the fermentation product of HX-1 strain through ethyl acetate extraction, silica gel and Sephadex LH-20 column chromatography, and semi-preparative HPLC techniques using an antibacterial-guided fractionation method. According to its physicochemical properties and spectral characteristics, the compound was identified as trypacidin having the same anti-V. harveyi activity as streptomycin sulfate, with the minimum inhibitory concentration of 31.25 µg/mL.

5.
Crit Rev Food Sci Nutr ; 60(13): 2294-2302, 2020.
Article in English | MEDLINE | ID: mdl-31272187

ABSTRACT

Umami taste is the most recent confirmed basic taste in addition to sour, sweet, bitter, and salty. It has been controversial because of its effects on human nutritional benefit. Based on the available literatures, this review categorized 13 positive and negative effects of umami taste on human health. On the positive side, umami taste can improve food flavor and consumption, improve nutrition intake of the elderly and patients, protect against duodenal cancer, reduce ingestion of sodium chloride, decrease consumption of fat, and improve oral functions. On the other hand, umami taste can also induce hepatotoxicity, cause asthma, induce migraine headaches, damage the nervous system, and promote obesity. Due to its novelty, there are many functions and effects of umami taste waiting to be discovered. With further investigation, more information regarding the effects of umami taste on human health will be discerned.


Subject(s)
Diet , Health , Taste/physiology , Diet/adverse effects , Humans , Nutritional Status/drug effects , Taste/drug effects
6.
Bioengineered ; 9(1): 166-169, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28902573

ABSTRACT

The taste of umami peptide H-Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala-OH (LGAGGSLA) is controversial. One possible reason for this controversy is the use of chemically synthesized LGAGGSLA to confirm its taste. To explore other ways to further confirm the flavor of LGAGGSLA, we developed a new strategy to prepare a bio-source peptide by adopting a gene engineering method to express LGAGGSLA in recombinant Escherichia coli. In our previous work, we structured the LGAGGSLA recombinant expression system and optimized the culturing conditions for preparing a fusion protein. However, the fusion protein was not cleaved by enterokinase to obtain LGAGGSLA. Because the cleavage conditions of commercial enterokinase were not specific and recombinant engineered bacteria had the potential to be used in industrial processes, in this addendum, we calculated the mass and volume yields of key processing steps in the preparation of LGAGGSLA, and established a model of cleavage conditions with the cleavage ratio of LGAGGSLA. When the LGAGGSLA was confirmed to show umami taste, it is considered as a new umami or umami enhancer. The gene information of LGAGGSLA should have a great potential in the development of new flavor product and food product containing high umami flavor.


Subject(s)
Enteropeptidase/chemistry , Escherichia coli/genetics , Odorants/analysis , Oligopeptides/biosynthesis , Protein Engineering/methods , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/metabolism , Food Technology/methods , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrolysis , Oligopeptides/genetics , Oligopeptides/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Taste/physiology
7.
Food Chem ; 227: 78-84, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274461

ABSTRACT

Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.


Subject(s)
Escherichia coli/genetics , Flavoring Agents/metabolism , Peptides/genetics , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Gene Expression , Genetic Engineering , Peptides/analysis , Peptides/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...