Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 616
Filter
1.
Eur J Pharmacol ; : 176704, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830458

ABSTRACT

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.

2.
Nat Commun ; 15(1): 4465, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796477

ABSTRACT

High concentrations of organic aerosol (OA) occur in Asian countries, leading to great health burdens. Clean air actions have resulted in significant emission reductions of air pollutants in China. However, long-term nation-wide trends in OA and their causes remain unknown. Here, we present both observational and model evidence demonstrating widespread decreases with a greater reduction in primary OA than in secondary OA (SOA) in China during the period of 2013 to 2020. Most of the decline is attributed to reduced residential fuel burning while the interannual variability in SOA may have been driven by meteorological variations. We find contrasting effects of reducing NOx and SO2 on SOA production which may have led to slight overall increases in SOA. Our findings highlight the importance of clean energy replacements in multiple sectors on achieving air-quality targets because of high OA precursor emissions and fluctuating chemical and meteorological conditions.

3.
Nat Commun ; 15(1): 4455, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796479

ABSTRACT

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Subject(s)
Brain , Lipidomics , Lipids , Humans , Animals , Brain/metabolism , Mice , Adult , Lipids/chemistry , Lipids/analysis , Male , Lipid Metabolism , Macaca , Neurons/metabolism , Female , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Myelin Sheath/metabolism , Middle Aged
4.
Natl Sci Rev ; 11(6): nwae130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741716

ABSTRACT

The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.

5.
Microb Pathog ; 192: 106717, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806136

ABSTRACT

There are no other bovine coronavirus (BCoV) infection models except calves, which makes efficacy evaluation of vaccines and pathogenic mechanism research of BCoV inconvenient owing to their high value and inconvenient operation. This study aimed to establish a mouse model of BCoV infection. BCoV was used to infect 4-week-old male BALB/c mice and the optimal infection conditions were screened, including the following infection routes: gavage, intraperitoneal injection, and tail vein injection at doses of 1 × 108 TCID50, 2 × 108 TCID50 and 4 × 108 TCID50. Using the optimal infection conditions, BALB/c mice were infected with BCoV, and their body weight, blood routine, inflammatory factors, autopsy, virus distribution, and viral load were measured at 1, 3, 5, and 7 days after infection. The results showed that the optimal conditions for infecting BALB/c mice with BCoV HLJ-325 strain were continuous oral gavage for 3 days with a dose of 4 × 108 TCID50. On the 7th day after infection, there was significant extensive consolidation of the lungs and thinning of the colon wall. Significant inflammation was observed in various organs, especially in the colon and alveoli, where a large number of inflammatory cells infiltrate. Both BCoV Ag and nucleic acid are positive in visceral organs. The viral load in the colon and lungs was significantly higher than that in the other organs (p < 0.001). BCoV-infected mice showed a decreasing trend in body weight starting from day 5, and there was a significant difference compared to the control group on days 6 and 7 (p < 0.001). The total number of white blood cells and lymphocytes began to decrease and was significantly lower than that in the control group 24 h after infection (p < 0.001), and gradually returned to the control level. The cytokine TNF-α, IL-1ß, and IL-6 showed an increasing trend, significantly higher than the control group on day 5 and 7 (p < 0.001). These results indicate that the BCoV HLJ-325 strain can infect BALB/c mice and cause inflammatory reactions and tissue lesions. The most significant effect was observed on the seventh day after infection with a dose of 4 × 108 TCID50 and three consecutive gavages. This study established, for the first time, a BALB/c mouse model of BCoV infection, providing a technical means for evaluating the immune efficacy of BCoV vaccines and studying their pathogenic mechanisms.

6.
Sci Total Environ ; 938: 173327, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761930

ABSTRACT

A near-explicit mechanism, the master chemical mechanism (MCMv3.3.1), coupled with the Community Multiscale Air Quality (CMAQ) model (CMAQ-MCM-SOA), was applied to investigate the characteristics of secondary organic aerosol (SOA) during a pollution event in the Yangtze River Delta (YRD) region in summer 2018. Model performances in predicting explicit volatile organic compounds (VOCs), organic aerosol (OA), secondary organic carbon (SOC), and other related pollutants in Taizhou, as well as ozone (O3) and fine particulate matter (PM2.5) in multiple cities in this region, were evaluated against observations and model predictions by the CMAQ model coupled with a lumped photochemical mechanism (SAPRC07tic, S07). MCM and S07 exhibited similar performances in predicting gaseous species, while MCM better captured the observed PM2.5 and inorganic aerosols. Both models underpredicted OA concentrations. When excluding data during biomass burning events, SOC concentrations were underpredicted by the CMAQ-MCM-SOA model (-28.4 %) and overpredicted by the CMAQ-S07 model (134.4 %), with better agreement with observations in the trend captured by the CMAQ-MCM-SOA model. Dicarbonyl SOA accounted for a significant fraction of total SOA in the YRD, while organic nitrates originating from aromatics were the most abundant species contributing to the SOA formation from gas-particle partitioning. The oxygen-to­carbon ratio (O/C) for SOA and OA were 0.68-0.75 and 0.20-0.65, respectively, indicating a higher oxidation state in the areas influenced by biogenic emissions. Finally, the phase state of SOA was examined by calculating the glass transition temperature (Tg) based on its molecular composition. It was found that semi-solid state characterized SOA in the YRD, which could potentially impact their chemical transformation and lifetimes along with those of their precursors.

7.
Angew Chem Int Ed Engl ; : e202405641, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818616

ABSTRACT

Compared to Ir, Ru-based catalysts often exhibited higher activity but suffered significant and rapid activity loss during the challenging oxygen evolution reaction (OER) in a corrosive acidic environment. Herein, we developed a hybrid MnRuOx catalyst in which the RuO2 microcrystalline regions serve as a supporting framework, and the amorphous MnRuOx phase fills the microcrystalline interstices. In particular, the MnRuOx-300 catalyst from an annealing temperature of 300oC contains an optimal amorphous/crystalline heterostructure, providing substantial defects and active sites, facilitating efficient adsorption and conversion of OH-. In addition, the heterostructure leads to a relative increase of the d-band center close to the Fermin level, thus accelerating electron transfer with reduced charge transfer resistance at the active interface between crystalline and amorphous phases during the OER. The catalyst was further thoroughly evaluated under various operating conditions and demonstrated exceptional activity and stability for the OER, representing a promising solution to replace Ir in water electrolyzers.

9.
Sci Total Environ ; 933: 172994, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38719033

ABSTRACT

Submicron particulate matter (PM1) poses significant risks to health risks and global climate. In this study, secondary organic aerosols (SOA) and inorganic compositions were examined for their physicochemical characteristics and evolution using high-resolution aerosol instruments in Changzhou over one-month period. The results showed that transport accompanied by regional static conditions leaded to the occurrence of heavy pollution. In addition, regional generation and local emissions also leaded to the occurrence of light and moderate pollution during the observation period in Changzhou. Organic aerosols (OA) and nitrate (NO3-) accounted for 45 % and 23 % of PM1, respectively. The increase in PM1 was dominated by the contribution of NO3- and OA. SOA was dominance in OA (63 % with 40 % MO-OOA), which was higher than primary organic aerosols (POA). Besides, photochemical reactions and the high oxidizing nature of the urban atmosphere promoted the production of OA, especially MO-OOA in Changzhou. Our results highlight that secondary particles contribute significantly to PM pollution in Changzhou, underlining the importance of controlling emissions of gaseous precursors, especially under high oxidation conditions.

10.
Int J Surg ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652128

ABSTRACT

BACKGROUND: Neoadjuvant and adjuvant immunotherapies for cancer have evolved through a series of remarkable and critical research advances; however, addressing their similarities and differences is imperative in clinical practice. Therefore, this study aimed to examine their similarities and differences from the perspective of informatics analysis. METHODS: This cross-sectional study retrospectively analyzed extensive relevant studies published between 2014 and 2023 using stringent search criteria, excluding non-peer-reviewed and non-English documents. The main outcome variables are publication volume, citation volume, connection strength, occurrence frequency, relevance percentage, and development percentage. Furthermore, an integrated comparative analysis was conducted using unsupervised hierarchical clustering, spatiotemporal analysis, regression statistics, and Walktrap algorithm analysis. RESULTS: This analysis included 1,373 relevant studies. Advancements in neoadjuvant and adjuvant immunotherapies have been promising over the last decade, with an annual growth rate of 25.18% vs. 6.52% and global collaboration (International Co-authorships) of 19.93% vs. 19.84%. Respectively, five dominant research clusters were identified through unsupervised hierarchical clustering based on machine learning, among which Cluster 4 (Balance of neoadjuvant immunotherapy efficacy and safety) and Cluster 2 (Adjuvant immunotherapy clinical trials) (Average Publication Year [APY]: 2021.70±0.70 vs. 2017.54±4.59) are emerging research populations. Burst and regression curve analyses uncovered domain pivotal research signatures, including microsatellite instability (R2=0.7500, P=0.0025) and biomarkers (R2=0.6505, P=0.0086) in neoadjuvant scenarios, and the tumor microenvironment (R2=0.5571, P=0.0209) in adjuvant scenarios. The Walktrap algorithm further revealed that "neoadjuvant immunotherapy, non-small cell lung cancer (NSCLC), immune checkpoint inhibitors, melanoma" and "adjuvant immunotherapy, melanoma, hepatocellular carcinoma, dendritic cells" (Relevance Percentage: 100% vs. 100%, Development Percentage: 37.5% vs. 17.1%) are extremely relevant to this field but remain underdeveloped, highlighting the need for further investigation. CONCLUSION: This study identified pivotal research signatures and provided substantial predictions for neoadjuvant and adjuvant cancer immunotherapies. In addition, comprehensive quantitative comparisons revealed a notable shift in focus within this field, with neoadjuvant immunotherapy taking precedence over adjuvant immunotherapy after 2020; such a qualitative finding facilitate proper decision-making for subsequent research and mitigate the wastage of healthcare resources.

11.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612220

ABSTRACT

The disposal of electroplating sludge (ES) is a major challenge for the sustainable development of the electroplating industry. ESs have a significant environmental impact, occupying valuable land resources and incurring high treatment costs, which increases operational expenses for companies. Additionally, the high concentration of hazardous substances in ES poses a serious threat to both the environment and human health. Despite extensive scholarly research on the harmless treatment and resource utilization of ES, current technology and processes are still unable to fully harness its potential. This results in inefficient resource utilization and potential environmental hazards. This article analyzes the physicochemical properties of ES, discusses its ecological hazards, summarizes research progress in its treatment, and elaborates on methods such as solidification/stabilization, heat treatment, wet metallurgy, pyrometallurgy, biotechnology, and material utilization. It provides a comparative summary of different treatment processes while also discussing the challenges and future development directions for technologies aimed at effectively utilizing ES resources. The objective of this text is to provide useful information on how to address the issue of ES treatment and promote sustainable development in the electroplating industry.

12.
J Hazard Mater ; 471: 134361, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669924

ABSTRACT

Evaporative emissions release organic compounds comparable to gasoline exhaust in China. However, the measurement of intermediate volatility organic compounds (IVOCs) is lacking in studies focusing on gasoline evaporation. This study sampled organics from a real-world refueling procedure and analyzed the organic compounds using comprehensive two-dimensional gas chromatography coupled with a mass spectrometer (GC×GC-MS). The non-target analysis detected and quantified 279 organics containing 93 volatile organic compounds (VOCs, 64.9 ± 7.4 % in mass concentration), 182 IVOCs (34.9 ± 7.4 %), and 4 semivolatile organic compounds (SVOCs, 0.2 %). The refueling emission profile was distinct from that of gasoline exhaust. The b-alkanes in the B12 volatility bin are the most abundant IVOC species (1.9 ± 1.4 µg m-3) in refueling. A non-negligible contribution of 17.5 % to the ozone formation potential (OFP) from IVOCs was found. Although IVOCs are less in concentration, secondary organic aerosol potential (SOAP) from IVOCs (58.1 %) even exceeds SOAP from VOCs (41.6 %), mainly from b-alkane in the IVOC range. At the molecular level, the proportion of cyclic compounds in SOAP (12.1 %) indeed goes above its mass concentration (3.1 %), mainly contributed by cyclohexanes and cycloheptanes. As a result, the concentrations and SOAP of cyclic compounds (>50 %) could be overestimated in previous studies. Our study found an unexpected contribution of IVOCs from refueling procedures to both ozone and SOA formation, providing new insights into secondary pollution control policy.

13.
Ecotoxicol Environ Saf ; 276: 116301, 2024 May.
Article in English | MEDLINE | ID: mdl-38599159

ABSTRACT

To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulation,morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.


Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistry
14.
ChemSusChem ; : e202400309, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610067

ABSTRACT

Layered double hydroxide (LDH) nanosheets as one type of two-dimensional materials have garnered increasing attention in the field of oxygen evolution reaction (OER) in recent decades. To address the challenges associated with poor conductivity and limited electron and charge transfer capability in LDH materials, we have developed a straightforward one-pot synthesis method to successfully fabricate a composite material with a microstructure resembling cabbage, which encompasses NiFe-LDH and nanocarbon (referred as NiFe-LDH@C). Atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) revealed that the monolayer NiFe-LDH with a height of ~0.5-0.8 nm is uniformly distributed and closely bonded to the carbon support, leading to a significant enhancement in conductivity and facilitating faster electron and charge transfer. Moreover, the NiFe-LDH@C exhibits a substantial number of surface defect sites, which enhances the interaction with oxygen species. This dual enhancement in charge transfer and oxygen species-mediated transfer greatly improves the catalytic OER performance, which is further corroborated by theoretical calculations. Notably, the Ni10Fe6-LDH@C with the highest concentration of surface oxygen vacancies demonstrated superior water oxidation performance, surpassing commercially available RuO2 catalysts; an OER overpotential of 231 mV@10 mA cm-2 with a Tafel slope of 71 mV dec-1 was achieved.

15.
Angew Chem Int Ed Engl ; : e202402374, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655601

ABSTRACT

The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.

16.
Br J Pharmacol ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616050

ABSTRACT

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.

17.
Biomark Res ; 12(1): 39, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627840

ABSTRACT

Liquid-liquid phase separation (LLPS) is a complex and subtle phenomenon whose formation and regulation take essential roles in cancer initiation, growth, progression, invasion, and metastasis. This domain holds a wealth of underutilized unstructured data that needs further excavation for potentially valuable information. Therefore, we retrospectively analyzed the global scientific knowledge in the field over the last decade by using informatics methods (such as hierarchical clustering, regression statistics, hotspot burst, and Walktrap algorithm analysis). Over the past decade, this area enjoyed a favorable development trend (Annual Growth Rate: 34.98%) and global collaboration (International Co-authorship: 27.31%). Through unsupervised hierarchical clustering based on machine learning, the global research hotspots were divided into five dominant research clusters: Cluster 1 (Effects and Mechanisms of Phase Separation in Drug Delivery), Cluster 2 (Phase Separation in Gene Expression Regulation), Cluster 3 (Phase Separation in RNA-Protein Interaction), Cluster 4 (Reference Value of Phase Separation in Neurodegenerative Diseases for Cancer Research), and Cluster 5 (Roles and Mechanisms of Phase Separation). And further time-series analysis revealed that Cluster 5 is the emerging research cluster. In addition, results from the regression curve and hotspot burst analysis point in unison to super-enhancer (a=0.5515, R2=0.6586, p=0.0044) and stress granule (a=0.8000, R2=0.6000, p=0.0085) as the most potential star molecule in this field. More interestingly, the Random-Walk-Strategy-based Walktrap algorithm further revealed that "phase separation, cancer, transcription, super-enhancer, epigenetics"(Relevance Percentage[RP]=100%, Development Percentage[DP]=29.2%), "stress granule, immunotherapy, tumor microenvironment, RNA binding protein"(RP=79.2%, DP=33.3%) and "nanoparticle, apoptosis"(RP=70.8%, DP=25.0%) are closely associated with this field, but are still under-developed and worthy of further exploration. In conclusion, this study profiled the global scientific landscape, discovered a crucial emerging research cluster, identified several pivotal research molecules, and predicted several crucial but still under-developed directions that deserve further research, providing an important reference value for subsequent basic and clinical research of phase separation in cancer.

18.
Chem Rec ; 24(4): e202300327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438715

ABSTRACT

Potassium-ion battery is rich in resources and cheap in price, in the era of lithium-ion battery commercialization, potassium-ion battery is the most likely to replace it. Based on the classification and summary of electrode materials for potassium-ion batteries, this paper focuses on the introduction of manganese-based oxide KxMnO2. The layered KxMnO2 has a large layer spacing and can be embedded with large size potassium-ions. This paper focuses on the preparation and doping of manganese-based cathode materials for potassium-ion batteries, summarizes the main challenges of KxMnO2-based cathode materials in the current stage of research and further looks into its future development direction.

19.
Luminescence ; 39(3): e4700, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506122

ABSTRACT

Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m-2 , 0.14 cd A-1 , 0.06 lm W-1 , and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.


Subject(s)
Iridium , Ligands , Ions , Solubility , Solvents
20.
Article in English | MEDLINE | ID: mdl-38507378

ABSTRACT

Malware open-set recognition (MOSR) is an emerging research domain that aims at jointly classifying malware samples from known families and detecting the ones from novel unknown families, respectively. Existing works mostly rely on a well-trained classifier considering the predicted probabilities of each known family with a threshold-based detection to achieve the MOSR. However, our observation reveals that the feature distributions of malware samples are extremely similar to each other even between known and unknown families. Thus, the obtained classifier may produce overly high probabilities of testing unknown samples toward known families and degrade the model performance. In this article, we propose the multi \ modal dual-embedding networks, dubbed MDENet, to take advantage of comprehensive malware features from different modalities to enhance the diversity of malware feature space, which is more representative and discriminative for down-stream recognition. Concretely, we first generate a malware image for each observed sample based on their numeric features using our proposed numeric encoder with a re-designed multiscale CNN structure, which can better explore their statistical and spatial correlations. Besides, we propose to organize tokenized malware features into a sentence for each sample considering its behaviors and dynamics, and utilize language models as the textual encoder to transform it into a representable and computable textual vector. Such parallel multimodal encoders can fuse the above two components to enhance the feature diversity. Last, to further guarantee the open-set recognition (OSR), we dually embed the fused multimodal representation into one primary space and an associated sub-space, i.e., discriminative and exclusive spaces, with contrastive sampling and ρ -bounded enclosing sphere regularizations, which resort to classification and detection, respectively. Moreover, we also enrich our previously proposed large-scaled malware dataset MAL-100 with multimodal characteristics and contribute an improved version dubbed MAL-100 + . Experimental results on the widely used malware dataset Mailing and the proposed MAL-100 + demonstrate the effectiveness of our method.

SELECTION OF CITATIONS
SEARCH DETAIL
...