Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 341: 122880, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37944886

ABSTRACT

Air pollutants, notably ozone (O3) and fine particulate matter (PM2.5) give rise to evident adverse impacts on public health and the ecotope, prompting extensive global apprehension. Though PM2.5 has been effectively mitigated in China, O3 has been emerging as a primary pollutant, especially in summer. Currently, alleviating PM2.5 and O3 synergistically faces huge challenges. The synergistic prevention and control (SPC) regions of PM2.5 and O3 and their spatiotemporal patterns were still unclear. To address the above issues, this study utilized ground monitoring station data, meteorological data, and auxiliary data to predict the China High-Resolution O3 Dataset (CHROD) via a two-stage model. Furthermore, SPC regions were identified based on a spatial overlay analysis using a Geographic Information System (GIS). The standard deviation ellipse was employed to investigate the spatiotemporal dynamic characteristics of SPC regions. Some outcomes were obtained. The two-stage model significantly improved the accuracy of O3 concentration prediction with acceptable R2 (0.86), and our CHROD presented higher spatiotemporal resolution compared with existing products. SPC regions exhibited significant spatiotemporal variations during the Blue Sky Protection Campaign (BSPC) in China. SPC regions were dominant in spring and autumn, and O3-controlled and PM2.5-dominated zones were detected in summer and winter, respectively. SPC regions were primarily located in the northwest, north, east, and central regions of China, specifically in the Beijing-Tianjin-Hebei urban agglomeration (BTH), Shanxi, Shaanxi, Shandong, Henan, Jiangsu, Xinjiang, and Anhui provinces. The gravity center of SPC regions was distributed in the BTH in winter, and in Xinjiang during spring, summer, and autumn. This study can supply scientific references for the collaborative management of PM2.5 and O3.


Subject(s)
Air Pollutants , Air Pollution , Air Pollution/prevention & control , Air Pollution/analysis , Environmental Monitoring , Air Pollutants/analysis , China , Particulate Matter/analysis
2.
Environ Sci Pollut Res Int ; 30(60): 126165-126177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38008841

ABSTRACT

Air pollution generated by urbanization and industrialization poses a significant negative impact on public health. Particularly, fine particulate matter (PM2.5) has become one of the leading causes of lung cancer mortality worldwide. The relationship between air pollutants and lung cancer has aroused global widespread concerns. Currently, the spatial agglomeration dynamic of lung cancer incidence (LCI) has been seldom discussed, and the spatial heterogeneity of lung cancer's influential factors has been ignored. Moreover, it is still unclear whether different socioeconomic levels and climate zones exhibit modification effects on the relationship between PM2.5 and LCI. In the present work, spatial autocorrelation was adopted to reveal the spatial aggregation dynamic of LCI, the emerging hot spot analysis was introduced to indicate the hot spot changes of LCI, and the geographically and temporally weighted regression (GTWR) model was used to determine the affecting factors of LCI and their spatial heterogeneity. Then, the modification effects of PM2.5 on the LCI under different socioeconomic levels and climatic zones were explored. Some findings were obtained. The LCI demonstrated a significant spatial autocorrelation, and the hot spots of LCI were mainly concentrated in eastern China. The affecting factors of LCI revealed an obvious spatial heterogeneity. PM2.5 concentration, nighttime light data, 2 m temperature, and 10 m u-component of wind represented significant positive effects on LCI, while education-related POI exhibited significant negative effects on LCI. The LCI in areas with low urbanization rates, low education levels, and extreme climate conditions was more easily affected by PM2.5 than in other areas. The results can provide a scientific basis for the prevention and control of lung cancer and related epidemics.


Subject(s)
Air Pollutants , Air Pollution , Lung Neoplasms , Humans , Lung Neoplasms/epidemiology , Incidence , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/analysis , China/epidemiology , Social Class , Environmental Monitoring/methods , Cities
SELECTION OF CITATIONS
SEARCH DETAIL
...