Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964734

ABSTRACT

INTRODUCTION: Intestinal immune dysregulation is strongly linked to the occurrence and formation of tumors. RING finger protein 128 (RNF128) has been identified to play distinct immunoregulatory functions in innate and adaptive systems. However, the physiological roles of RNF128 in intestinal inflammatory conditions such as colitis and colorectal cancer (CRC) remain controversial. OBJECTIVES: To elucidate the function and mechanism of RNF128 in colitis and CRC. METHODS: Animal models of dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced CRC were established in WT and Rnf128-deficient mice and evaluated by histopathology. Co-immunoprecipitation and ubiquitination analyses were employed to investigate the role of RNF128 in IL-6-STAT3 signaling. RESULTS: RNF128 was significantly downregulated in clinical CRC tissues compared with paired peritumoral tissues. Rnf128-deficient mice were hypersusceptible to both colitis induced by DSS and CRC induced by AOM/DSS or APC mutation. Loss of RNF128 promoted the proliferation of CRC cells and STAT3 activation during the early transformative stage of carcinogenesis in vivo and in vitro when stimulated by IL-6. Mechanistically, RNF128 interacted with the IL-6 receptor α subunit (IL-6Rα) and membrane glycoprotein gp130 and mediated their lysosomal degradation in ligase activity-dependent manner. Through a series of point mutations in the IL-6 receptor, we identified that RNF128 promoted K48-linked polyubiquitination of IL-6Rα at K398/K401 and gp130 at K718/K816/K866. Additionally, blocking STAT3 activation effectively eradicated the inflammatory damage of Rnf128-deficient mice during the transformative stage of carcinogenesis. CONCLUSION: RNF128 attenuates colitis and colorectal tumorigenesis by inhibiting IL-6-STAT3 signaling, which sheds novel insights into the modulation of IL-6 receptors and the inflammation-to-cancer transition.

2.
Cell Mol Life Sci ; 81(1): 280, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918243

ABSTRACT

Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.


Subject(s)
Apoptosis , Candida albicans , Candidiasis , DNA-Binding Proteins , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Candidiasis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Inflammasomes/metabolism , Immunity, Innate , Kidney/pathology , Kidney/metabolism , Kidney/microbiology
3.
J Immunol ; 212(12): 1932-1944, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38709167

ABSTRACT

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.


Subject(s)
Autophagy , Candida albicans , Candidiasis , Interferon Regulatory Factor-7 , Lectins, C-Type , Macrophages , Mice, Knockout , Phagocytosis , Receptors, Cell Surface , TOR Serine-Threonine Kinases , Animals , Mice , Phagocytosis/immunology , Autophagy/immunology , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Candidiasis/immunology , Candida albicans/immunology , Candida albicans/physiology , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Macrophages/immunology , Humans , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice, Inbred C57BL , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Signal Transduction/immunology
4.
Ecotoxicol Environ Saf ; 263: 115262, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37480693

ABSTRACT

China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.


Subject(s)
Metals, Rare Earth , Yttrium , Humans , Animals , Mice , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Reactive Oxygen Species , Apoptosis , Autophagy , DNA, Mitochondrial , Genitalia, Male
5.
Cancers (Basel) ; 14(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954484

ABSTRACT

Disorders of gut microbiota have been closely linked to the occurrence of various intestinal diseases including colitis and colorectal cancer (CRC). Specifically, the production of beneficial bacteria and intestinal metabolites may slow the development of some intestinal diseases. Recently, it has been proposed that pattern recognition receptors (PRRs) not only recognize pathogens and initiate inflammatory signal transduction to induce immune responses but also influence the composition of intestinal microorganisms. However, the mechanisms through which PRRs regulate gut microbiota in the setting of colitis and CRC have rarely been systematically reviewed. Therefore, in this paper, we summarize recent advances in our understanding of how PRRs shape gut microbiota and how this influences the development of colitis and CRC.

6.
Genet Sel Evol ; 54(1): 54, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896967

ABSTRACT

BACKGROUND: The porcine repetitive element 1 (PRE1) is the most abundant short interspersed nuclear element (SINE) in the Sus scrofa genome and it has been suggested that some PRE1 can have regulatory functions. The million copies of PRE1 in the porcine genome have accumulated abundant CpG dinucleotides and unique structural variations, such as direct repeats and patterns of sequence degeneration. The aims of this study were to analyse these structural variations to trace the origin and evolutionary pattern of PRE1 and to investigate potential methylation-related functions of PRE1 based on methylation patterns of PRE1 CpG dinucleotides in different tissues. RESULTS: We investigated the evolutionary trajectory of PRE1 and found that PRE1 originated from the ancestral CHRS-S1 family through three main successive partial duplications. We found that the partial duplications and deletions of PRE1 were likely due to RNA splicing events during retrotransposition. Functionally, correlation analysis showed that the methylation levels of 103 and 261 proximal PRE1 were, respectively, negatively and positively correlated with the expression levels of neighboring genes (Spearman correlation, P < 0.01). Further epigenomic analysis revealed that, in the testis, demethylation of proximal PRE1 in the HORMAD1 and HACD3 genes had tissue-specific enhancer and promoter functions, while in the muscle, methylation of proximal PRE1 repeats in the TCEA3 gene had an enhancer function. CONCLUSIONS: The characteristic sequences of PRE1 reflect unique patterns of origin and evolution and provide a structural basis for diverse regulatory functions.


Subject(s)
DNA Methylation , Repetitive Sequences, Nucleic Acid , Animals , Male , Promoter Regions, Genetic , Swine/genetics
7.
Gene ; 831: 146576, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35568340

ABSTRACT

Abdominal aortic aneurysms (AAA) are pathological dilations in local aortic wall. The inflammatory infiltrates of the perivascular adipose tissue (PAT) surrounding AAAs were associated with AAAs and have been shown to contribute vascular pathology. However, the mechanism by which PAT inflammation contributes to vascular pathology in AAA remains to be clarified. This study aimed to explore the association between immune cell infiltration and key gene expression profile in PAT of AAA. For that, a gene expression dataset of human dilated perivascular adipose tissue (dPAT), non-dilated perivascular adipose tissue (ndPAT), subcutaneous abdominal fat (SAF) and omental-visceral fat (OVF) samples, as well as another microarray dataset of the abdominal perivascular adipose tissue in peripheral artery disease patients were downloaded from GEO database for analysis in this study. The CIBERSORT algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm were used for the identification of immune infiltration, immune-related genes and the development of diagnostic signature. Our data discovered a significant higher proportion of activated mast cells and follicular helper T (Tfh) cells in dPAT than ndPAT, OVT and SAF samples. Moreover, AP-1 family members (FOS, FOSB, ATF3, JUN and JUNB) were found to compose the hub genes of purple module in WGCNA. Among them, FOS gene acts as a higher efficient marker to discriminate dPAT from ndPAT, OVT and SAF in AAA. Meanwhile, the expression profiles of the AP-1 family members are all significantly positive correlated with activated mast cell, plasma cell and Tfh cell infiltration in dPAT of AAA. Therefore, in the PAT surrounding AAA, the signature of inflammatory infiltration might be represented by a FOS-dominated cell network consist of activated mast cell, plasma cell and Tfh cell. Given the complicated etiology of AAA, our results are likely to shed new light on the pathophysiologic mechanism of AAA influenced by the local dPAT.


Subject(s)
Aortic Aneurysm, Abdominal , Proto-Oncogene Proteins c-fos/genetics , Adipose Tissue/metabolism , Aortic Aneurysm, Abdominal/metabolism , Genes, fos , Humans , Transcription Factor AP-1/genetics , Transcriptome
8.
Materials (Basel) ; 14(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806569

ABSTRACT

Structural topology and loading condition have important influences on the mechanical behaviors of porous soft solids. The porous solids are usually set to be under uniaxial tension or compression. Only a few studies have considered the biaxial loads, especially the combined loads of tension and compression. In this study, porous soft solids with oblique and square lattices of circular voids under biaxial loadings were studied through integrated experiments and numerical simulations. For the soft solids with oblique lattices of circular voids, we found a new pattern transformation under biaxial compression, which has alternating elliptic voids with an inclined angle. This kind of pattern transformation is rarely reported under uniaxial compression. Introducing tensile deformation in one direction can hamper this kind of pattern transformation under biaxial loading. For the soft solids with square lattices of voids, the number of voids cannot change their deformation behaviors qualitatively, but quantitatively. In general, our present results demonstrate that void morphology and biaxial loading can be harnessed to tune the pattern transformations of porous soft solids under large deformation. This discovery offers a new avenue for designing the void morphology of soft solids for controlling their deformation patterns under a specific biaxial stress-state.

9.
Aging (Albany NY) ; 12(24): 25412-25431, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33231562

ABSTRACT

DNA methylome pattern is significantly different among tissues, ages, breeds, and genders. We assessed 20 methylome and transcriptome data in longissimus dorsi (LD) or testicles from Bamaxiang (BMX) and Large White pigs (LW) by deep sequencing technology. We identified ~55.7M CpGs and 5.30M, 0.20M, 1.20M, and 0.16M differential CpGs (P<0.01) between tissues, ages, breeds, and genders, respectively. Interestingly, 7.54% of differentially methylated regions (DMRs) are co-localized with promoters, which potentially regulate gene expression. RNA-seq analysis revealed that 23.42% CpGs are significantly correlated with gene expression (mean |r|=0.58, P<0.01), most of which are enriched in tissue-specific functions. Specially, we also found that the methylation levels in promoters of 655 genes were strongly associated with their expression levels (mean |r|=0.66, P<0.01). In addition, differentially methylated CpGs (DMCpGs) between breeds in HOXC gene cluster imply important regulatory roles in myocytes hypertrophy and intermuscular fat (IMF) deposition. Dramatically, higher similarity of methylation pattern was observed within pedigree than across pedigrees, which indicates the existence of heritable methylation regions. In summary, a part of CpGs in promoter can change its methylation pattern and play a marked regulatory function in different physiological or natural environments.


Subject(s)
DNA Methylation/physiology , Muscle, Skeletal , Swine/genetics , Testis , Animals , CpG Islands/genetics , Female , Gene Expression Profiling , Male , Promoter Regions, Genetic/genetics
10.
Asian-Australas J Anim Sci ; 33(5): 704-711, 2020 May.
Article in English | MEDLINE | ID: mdl-31480184

ABSTRACT

OBJECTIVE: Muscle fiber types, numbers and area are crucial aspects associated with meat production and quality. However, there are few studies of pig muscle fibre traits in terms of the detection power, false discovery rate and confidence interval precision of whole-genome quantitative trait loci (QTL). We had previously performed genome scanning for muscle fibre traits using 183 microsatellites and detected 8 significant QTLs in a White Duroc× Erhualian F2 population. The confidence intervals of these QTLs ranged between 11 and 127 centimorgan (cM), which contained hundreds of genes and hampered the identification of QTLs. A whole-genome sequence imputation of the population was used for fine mapping in this study. METHODS: A whole-genome sequences association study was performed in the F2 population. Genotyping was performed for 1,020 individuals (19 F0, 68 F1, and 933 F2). The whole-genome variants were imputed and 21,624,800 single nucleotide polymorphisms (SNPs) were identified and examined for associations to 11 longissimus dorsi muscle fiber traits. RESULTS: A total of 3,201 significant SNPs comprising 7 novel QTLs showing associations with the relative area of fiber type I (I_RA), the fiber number per square centimeter (FN) and the total fiber number (TFN). Moreover, one QTL on pig chromosome 14 was found to affect both FN and TFN. Furthermore, four plausible candidate genes associated with FN (kinase non-catalytic C-lobe domain containing [KNDC1]), TFN (KNDC1), and I_RA (solute carrier family 36 member 4, contactin associated protein like 5, and glutamate metabotropic receptor 8) were identified. CONCLUSION: An efficient and powerful imputation-based association approach was utilized to identify genes potentially associated with muscle fiber traits. These identified genes and SNPs could be explored to improve meat production and quality via marker-assisted selection in pigs.

11.
Front Genet ; 9: 401, 2018.
Article in English | MEDLINE | ID: mdl-30405681

ABSTRACT

The whole-genome sequences of progenies with low-density single-nucleotide polymorphism (SNP) genotypes can be imputed with high accuracy based on the deep-coverage sequences of key ancestors. With this imputation technology, a more powerful genome-wide association study (GWAS) can be carried out using imputed whole-genome variants and the phenotypes of interest to overcome the shortcomings of low-power detection and the large confidence interval derived from low-density SNP markers in classic association studies. In this study, 19 ancestors of a large-scale swine F2 White Duroc × Erhualian population were deeply sequenced for their genome with an average coverage of 25×. Considering 98 pigs from 10 different breeds with high-quality deep sequenced genomes, we imputed the whole genomic variants of 1020 F2 pigs genotyped by the PorcineSNP60 BeadChip with high accuracy and obtained 14,851,440 sequence variants after quality control. Based on this, 87 novel quantitative traits loci (QTLs) for 18 hematological traits at three different physiological stages of the F2 pigs were identified, among which most of the novel QTLs have been repeated in two of the three stages. Literature mining pinpointed that the FGF14 and LCLAT1 genes at SSC11 and SSC3 may affect the MCH at day 240 and MCV at day 18, respectively. The present study shows that combining high-quality imputed genomic variants and correlated phenomic traits into GWAS can improve the capability to detect QTL considerably. The large number of different QTLs for hematological traits identified at multiple growth stages implies the complexity and time specificity of these traits.

12.
Soft Matter ; 13(35): 6011-6020, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28782771

ABSTRACT

Controlling the morphologies and properties of the surface and/or interface of bimaterials consisting of soft polymers provides new opportunities in many engineering applications. Crease is a widely observed deformation mode in nature and engineering applications for soft polymers where the smooth surface folds into a region of self-contact with a sharp tip, usually induced by the instability from mechanical compression or swelling. In this work, we explore the competition mechanisms between surface and interface creases through numerical simulations and experimental studies on bilayer hydrogels. The surface or interface crease of the bilayer hydrogels under swelling is governed by both the modulus ratio (M2/M1) and the height ratio (H2/H1). Through extensive numerical simulations, we find that the interface crease of the bilayer hydrogels can only occur at a moderate modulus ratio (24 < M2/M1 < 96) and a large height ratio (H2/H1 ≥ 8). Guided by this phase diagram, our experiments confirm that both surface and interface creases can be generated by swelling triggered instability, and the transition of surface to interface creases occurs at the critical value of the height ratio (H2/H1) between 5 and 10. Such an observation is in good agreement with our numerical predictions. Fundamental understandings on the switching between the surface and interface creases provide new insights into the design of highly tunable soft materials and devices over a wide range of length scales.

13.
Soft Matter ; 13(3): 619-626, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27991643

ABSTRACT

Soft solids such as PDMS or silicone are widely needed in many advanced applications such as flexible electronics and medical engineering. The ability to control the structure and properties of the surface of soft solids provides new opportunities in these applications. In particular, mechanical loading induced elastic instability is a convenient method to control the surface morphology. The critical strain at which the crease nucleates is experimentally measured under plane strain conditions, and is found to be consistent with that predicted by nonlinear large deformation theory of creases. Under compressive loading, we find that silicone undergoes a transition of creasing pattern from a single channeling or double channeling crease to an unchanneling crease, depending on the specimen's width and height. Finite element simulations are performed to better understand the underlying mechanism of creasing, wherein a relationship between the depth and spacing of the creases is established. It is found to be in good agreement with the experimental data obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...