Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharm Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981901

ABSTRACT

PURPOSE: Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS: Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS: The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS: The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.

2.
Pharm Res ; 40(5): 1223-1238, 2023 May.
Article in English | MEDLINE | ID: mdl-36949370

ABSTRACT

PURPOSE: To evaluate how obesity affects the pharmacokinetics of human IgG following subcutaneous (SC) and intravenous (IV) administration to rats and the homeostasis of endogenous rat IgG. METHODS: Differences in body weight and size, body composition, and serum concentration of endogenous rat IgG in male Zucker obese (ZUC-FA/FA) and control (ZUC-LEAN) rats were measured from the age of 5 weeks up to 30 weeks. At the age of 23-24 weeks animals received a single IV or SC dose of human IgG (1 g/kg of total body weight), and serum pharmacokinetics was followed for 7 weeks. A mechanistic model linking obesity-related changes in pharmacokinetics with animal growth and changes in body composition was developed. RESULTS: Significant differences were observed in both endogenous and exogenous IgG pharmacokinetics between obese and control groups. The AUC for human IgG was lower in obese groups (57.6% of control after IV and 48.1% after SC dosing), and clearance was 1.75-fold higher in obese animals. The mechanistic population model successfully captured the data and included several major components: endogenous rat IgG homeostasis with age-dependent synthesis rate; competition of human IgG and endogenous rat IgG for FcRn binding and its effect on endogenous rat IgG concentrations following injection of a high dose of human IgG; and the effect of body size and composition (changing over time and dependent on the obesity status) on pharmacokinetic parameters. CONCLUSIONS: We identified important obesity-induced changes in the pharmacokinetics of IgG. Results can potentially facilitate optimization of the dosing of IgG-based therapeutics in the obese population.


Subject(s)
Immunoglobulin G , Obesity , Rats , Male , Humans , Animals , Infant , Rats, Zucker , Obesity/drug therapy , Obesity/metabolism , Immunoglobulin G/therapeutic use , Body Weight
3.
Pharm Res ; 37(10): 205, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32989520

ABSTRACT

PURPOSE: Modulation of 5-HT3 receptor in the central nervous system (CNS) is a promising approach for treatment of neuropathic pain. The goal was to evaluate the role of P-glycoprotein (Pgp) in limiting exposure of different parts of the CNS to ondansetron (5-HT3 receptor antagonist) using wild-type and genetic knockout rat model. METHODS: Plasma pharmacokinetics and CNS (brain, spinal cord, and cerebrospinal fluid) disposition was studied after single 10 mg/kg intravenous dose. RESULTS: Pgp knockout resulted in significantly higher concentrations of ondansetron in all tested regions of the CNS at most of the time points. The mean ratio of the concentrations between KO and WT animals was 2.39-5.48, depending on the region of the CNS. Male and female animals demonstrated some difference in ondansetron plasma pharmacokinetics and CNS disposition. Mechanistic pharmacokinetic model that included two systemic disposition and three CNS compartments (with intercompartmental exchange) was developed. Pgp transport was incorporated as an efflux from the brain and spinal cord to the central compartment. The model provided good simultaneous description of all data sets, and all parameters were estimated with sufficient precision. CONCLUSIONS: The study provides important quantitative information on the role of Pgp in limiting ondansetron exposure in various regions of the CNS using data from wild-type and Pgp knockout rats. CSF drug concentrations, as a surrogate to CNS exposure, are likely to underestimate the effect of Pgp on drug penetration to the brain and the spinal cord.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Central Nervous System/metabolism , Ondansetron/pharmacokinetics , Serotonin 5-HT3 Receptor Antagonists/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Brain/metabolism , Female , Male , Mice, Knockout , Models, Animal , Neuralgia/metabolism , Ondansetron/blood , Ondansetron/cerebrospinal fluid , Rats , Rats, Sprague-Dawley , Serotonin 5-HT3 Receptor Antagonists/blood , Serotonin 5-HT3 Receptor Antagonists/cerebrospinal fluid , Spinal Cord/metabolism
4.
Lab Chip ; 19(13): 2241-2255, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31168548

ABSTRACT

With point-of-care (POC) diagnostic devices becoming increasingly available to untrained users, it will be critical to understand how real-world user behavior can best inform and guide the engineering design process. Social sciences present frameworks for analyzing user behavior, but they have not yet been applied to POC diagnostics in a methodical manner. Here, we develop a framework that synthesizes two models that can collectively account for user behavior and experience with POC diagnostic devices: a social psychological information-motivation-behavior (IMB) model (first described by Fisher and Fisher) for identifying determinants for health-related behavior, and user experience (UX) elements for studying interactions between users and products. Based on studies of 40 naïve users of our smartphone-enabled microfluidics device that can be used for HIV home-testing, we found that untrained participants could perform 90% of steps correctly, with engineering design elements that provided feedback that was either direct (e.g., a light or click) or binary (e.g., a switch) enhancing usability. Interestingly, of the steps performed incorrectly, over 70% were due not to errors in the device or user operation, but user-to-user variability (e.g. time in collecting fingerstick and force applied to initiate vacuum), which could be addressed by further modifications to the device. Overall, this study suggests that microfluidic POC HIV home-testing is likely to benefit from smartphone integration, and that engineering design of POC diagnostic devices can benefit from a structured evaluation of user behavior and experience, as guided by a social-psychological framework, which emphasizes user credibility, accessibility, acceptability, usability, and value.


Subject(s)
Cell Phone , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Point-of-Care Systems , Reagent Kits, Diagnostic , Tissue Engineering , Adult , Aged , Cell Phone/instrumentation , Female , HIV Infections/diagnosis , Humans , Microfluidic Analytical Techniques/instrumentation , Middle Aged , Young Adult
6.
Lab Chip ; 15(17): 3514-20, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26190320

ABSTRACT

It is traditionally difficult to incorporate two classes of diagnostic tests into a single platform. In this work, we demonstrate a microfluidic-based smartphone dongle that simultaneously measures concentration of hemoglobin and detects HIV antibodies. Specifically, we demonstrate how a previously published immunoassay device, which measured optical density of silver precipitation on gold colloids, can be expanded to quantitatively measure hemoglobin concentration via a colorimetric assay. By lysing whole blood components with CHAPS detergent, we achieved highly reproducible measurement of hemoglobin concentration with the device. We tested this dual test on 38 patient samples from Columbia University Medical Center. Compared with the Hemocue Hb 201+ analyzer, hemoglobin concentrations from our device were accurate within 1.2 g dL(-1), while the HIV immunoassay (in the presence of CHAPS detergent) showed 95% sensitivity and 95% specificity, comparable to our previous studies. This work demonstrates the feasibility of integrating two classes of diagnostic tests (a colorimetric-based quantitative measurement and an immunoassay based on silver precipitation on gold colloids) into a low-cost, fast, and low-power dongle that works with smartphones, and creates a novel dual panel with clinical utility for antenatal-care settings.


Subject(s)
Blood Chemical Analysis/instrumentation , Colorimetry/instrumentation , HIV Antibodies/blood , Immunoassay/instrumentation , Smartphone , Feasibility Studies , Hemoglobins/analysis , Humans , Linear Models , Reproducibility of Results , Sensitivity and Specificity
7.
Sci Transl Med ; 7(273): 273re1, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25653222

ABSTRACT

This work demonstrates that a full laboratory-quality immunoassay can be run on a smartphone accessory. This low-cost dongle replicates all mechanical, optical, and electronic functions of a laboratory-based enzyme-linked immunosorbent assay (ELISA) without requiring any stored energy; all necessary power is drawn from a smartphone. Rwandan health care workers used the dongle to test whole blood obtained via fingerprick from 96 patients enrolling into care at prevention of mother-to-child transmission clinics or voluntary counseling and testing centers. The dongle performed a triplexed immunoassay not currently available in a single test format: HIV antibody, treponemal-specific antibody for syphilis, and nontreponemal antibody for active syphilis infection. In a blinded experiment, health care workers obtained diagnostic results in 15 min from our triplex test that rivaled the gold standard of laboratory-based HIV ELISA and rapid plasma reagin (a screening test for syphilis), with sensitivity of 92 to 100% and specificity of 79 to 100%, consistent with needs of current clinical algorithms. Patient preference for the dongle was 97% compared to laboratory-based tests, with most pointing to the convenience of obtaining quick results with a single fingerprick. This work suggests that coupling microfluidics with recent advances in consumer electronics can make certain laboratory-based diagnostics accessible to almost any population with access to smartphones.


Subject(s)
Cell Phone , Communicable Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/instrumentation , Point-of-Care Systems , Electric Power Supplies , Equipment Design , Health Care Surveys , Humans , Immunoassay/instrumentation , Immunoassay/methods , Patient Satisfaction , Rwanda , Sensitivity and Specificity
8.
Methods Mol Biol ; 1256: 3-14, 2015.
Article in English | MEDLINE | ID: mdl-25626528

ABSTRACT

Here we describe a low-cost mobile device that combines cell-phone and satellite communication technologies with fluid miniaturization techniques for performing all essential functions of enzyme-linked immunosorbent assay (ELISA). Disease-specific antigens are immobilized on the microfluidic surface, and disease specific antibodies are captured on the surface and visualized with silver-gold amplification. The diagnostic result is automatically determined by the device by measuring the absorbance through the silver-gold amplification in the microchannel. The results are displayed for the user and are synchronized to a remote patient record. The overall system aims to be portable, robust, low-power, and fully utilize the ability of mobile devices for bringing better health care to resource poor areas.


Subject(s)
Antigens/analysis , Biomedical Technology/instrumentation , Microfluidic Analytical Techniques/instrumentation , Telemedicine/instrumentation , Antibodies/chemistry , Biomedical Technology/economics , Biomedical Technology/methods , Cell Phone/economics , Cell Phone/instrumentation , Developing Countries , Enzyme-Linked Immunosorbent Assay , Gold/chemistry , Health Records, Personal , Humans , Microfluidic Analytical Techniques/economics , Satellite Communications , Silver/chemistry , Telemedicine/economics , Telemedicine/methods
9.
PLoS Pathog ; 7(2): e1002002, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21383976

ABSTRACT

If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.


Subject(s)
AIDS Vaccines/therapeutic use , Adenoviridae/genetics , HIV Infections/therapy , HIV Seropositivity/immunology , HIV/immunology , HLA-B Antigens/genetics , T-Lymphocytes, Cytotoxic , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry , HIV Infections/immunology , HIV Infections/virology , HIV Long-Term Survivors , HIV Seropositivity/genetics , Humans , Virus Replication
10.
Mol Biol Cell ; 19(10): 4249-59, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18632979

ABSTRACT

Epidermal growth factor (EGF) receptor-mediated cell migration plays a vital role in invasion of many tumor types. EGF receptor ligands increase invasiveness in vivo, but it remains unclear how consequent effects on intrinsic cell motility behavior versus effects on extrinsic matrix properties integrate to result in net increase of translational speed and/or directional persistence of migration in a 3D environment. Understanding this convolution is important for therapeutic targeting of tumor invasion, as key regulatory pathways for intrinsic versus extrinsic effects may not be coincident. Accordingly, we have undertaken a quantitative single-cell imaging study of glioblastoma cell movement in 3D matrices and on 2D substrata across a range of collagen densities with systematic variation of protease-mediated matrix degradation. In 3D, EGF induced a mild increase in cell speed and a strong increase in directional persistence, the latter depending heavily on matrix density and EGF-stimulated protease activity. In contrast, in 2D, EGF induced a similarly mild increase in speed but conversely a decrease in directional persistence (both independent of protease activity). Thus, the EGF-enhanced 3D tumor cell migration results only partially from cell-intrinsic effects, with override of cell-intrinsic persistence decrease by protease-mediated cell-extrinsic reduction of matrix steric hindrance.


Subject(s)
Brain Neoplasms/pathology , Epidermal Growth Factor/metabolism , Glioblastoma/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Collagen/chemistry , Collagen/metabolism , Glioblastoma/metabolism , Green Fluorescent Proteins/metabolism , Humans , Ligands , Matrix Metalloproteinase 14/metabolism , Models, Biological , Peptide Hydrolases/metabolism , Time Factors , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...