Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39048305

ABSTRACT

Moving boundaries of electrical double layers have shown promising capability in driving directional electron flows in solids, leading to a range of hydrovoltaic effects. The recent discovery of a photohydrovoltaic phenomenon utilizes a moving illumination zone to generate moving boundaries with different properties at the solid-water interface, referred to as the kinetic photovoltaic effect. Here, oxygen was found to act as a chemical switch to turn on and off the kinetic photovoltaic effect. Introducing oxygen would rapidly diminish the kinetic photovoltage in p-Si. On the contrary, degassing oxygen leads to a gradual recovery, whose rate can be facilely speeded up by more than one order through electrostatic gating. Mechanistic investigations of the oxygen switch behavior uncovered a dependence of surface band bending intensity of silicon on oxygen adsorption, which highlights the role of gas molecules, often overlooked, in applications based on semiconductor-liquid interfaces, such as photoelectrochemistry.

2.
Science ; 385(6707): 433-438, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052792

ABSTRACT

The ever-increasing power conversion efficiency of perovskite solar cells has illuminated the future of the photovoltaic industry, but the development of commercial devices is hampered by their poor stability. In this study, we report a scalable stabilization method using vapor-phase fluoride treatment, which achieves 18.1%-efficient solar modules (228 square centimeters) with accelerated aging-projected T80 lifetimes (time to 80% of efficiency remaining) of 43,000 ± 9000 hours under 1-sun illumination at 30°C. The high stability results from vapor-enabled homogeneous fluorine passivation over large-area perovskite surfaces, suppressing defect formation energy and ion diffusion. The extracted degradation activation energy of 0.61 electron volts for solar modules is comparable to that of most reported stable cells, which indicates that modules are not inherently less stable than cells and closes the cell-to-module stability gap.

3.
Nat Nanotechnol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009756

ABSTRACT

The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat.

4.
Nano Lett ; 24(25): 7572-7577, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860969

ABSTRACT

Achieving high-temperature superlubricity is essential for modern extreme tribosystems. Solid lubrication is the sole viable alternative due to the degradation of liquid ones but currently suffers from notable wear, instability, and high friction coefficient. Here, we report robust superlubricity in MoS2/graphene van der Waals heterostructures at high temperatures up to ∼850 K, achieved through localized heating to enable reliable friction testing. The ultralow friction of the MoS2/graphene heterostructure is found to be notably further reduced at elevated temperature and dominantly contributed by the MoS2 edge. The observation can be well described by a multi-contact model, wherein the thermally activated rupture of edge-contacts facilitates the sliding. Our results should be applicable to other van der Waals heterostructures and shed light on their applications for superlubricity at elevated temperature.

5.
J Phys Chem Lett ; 15(25): 6585-6591, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885449

ABSTRACT

Accurately characterizing friction behaviors at water-solid interfaces remains a challenge because of the dynamic nature of water molecules and temporal variations in solid surface charges. By using a density-functional-theory (DFT) based machine learning (ML) technique and long-time ML-parametrized molecular dynamics simulations, we have systematically investigated water-induced charge polarization and redistribution on graphene, as well as its impact on friction at water-graphene interfaces. Heterogeneous charge polarization and distribution are observed for water-covered graphene accompanied by the formation of electric double layers (EDLs). The introduction of defects into graphene significantly enhances the heterogeneity in charge polarization and distribution. Compared to pristine graphene, defected graphene exhibits reduced friction at water-graphene interfaces due to stronger charge heterogeneity, resulting in lower surface charge density and the inverse relationship between slip length and surface charge density for EDLs. Our results highlight the pivotal roles of defects and charge heterogeneity in reducing friction at water-graphene interfaces.

6.
Environ Sci Technol ; 58(26): 11301-11308, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38900968

ABSTRACT

Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.


Subject(s)
Balkan Nephropathy , Floods , Balkan Nephropathy/chemically induced , Balkan Nephropathy/epidemiology , Humans , Coal , Serbia , Soil Pollutants/toxicity , Aristolochic Acids , Animals , Aristolochia/chemistry , Balkan Peninsula , Wood , Kidney Diseases/chemically induced
7.
Phys Rev Lett ; 132(18): 188401, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759163

ABSTRACT

Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations. The knock-on process is accomplished by the switching of covalent O─H bonds of the functional group under externally applied electric fields. The proton transport through the synthetic nanopore exhibits nonlinear current-voltage characteristics, suggesting an unprecedented proton Coulomb blockade effect. These findings not only enhance the understanding of proton transport in nanoconfined systems but also pave the way for the design of a variety of proton-based nanofluidic devices.

8.
J Phys Chem Lett ; 15(20): 5556-5563, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38752895

ABSTRACT

Solid-state nanopores have been extensively explored as single-molecule sensors, bearing the potential for the sequencing of DNA. Although they offer advantages in terms of high mechanical robustness, tunable geometry, and compatibility with existing semiconductor fabrication techniques in comparison with their biological counterparts, efforts to sequence DNA with these nanopores have been hampered by insufficient spatial resolution and high noise in the measured ionic current signal. Here we show that these limitations can be overcome by the use of solid-state nanopores featuring a thin, narrow constriction as the sensing region, inspired by biological protein nanopores that have achieved notable success in DNA sequencing. Our extensive molecular dynamics simulations show that these bio-inspired nanopores can provide high spatial resolution equivalent to 2D material nanopores and, meanwhile, significantly inhibit noise levels. A theoretical model is also provided to assess the performance of the bio-inspired nanopore, which could guide its design and optimization.


Subject(s)
Molecular Dynamics Simulation , Nanopores , DNA/chemistry , Sequence Analysis, DNA/methods
9.
J Am Chem Soc ; 146(19): 13276-13281, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690762

ABSTRACT

The separation of xylene isomers is of vital importance in chemical industry but remains challenging due to their similar structure and overlapping physiochemical properties. Membrane-based separations using the zeolite MFI, graphene oxide, and metal-organic frameworks have been intensively studied for this application, but the performance is limited by the well-known rule that the filtrate permeance scales inversely with the membrane thickness. We propose a novel membrane design that is capable of breaking this rule, based on an array of recently discovered zeolite nanotubes. Each zeolite nanotube possesses a 3.6-nm-wide central channel, connecting to dense, uniform 0.8-nm-wide holes on its wall that act as selective pores. Comprehensive molecular dynamics simulations show that this membrane exhibits permeance exceeding current state-of-the-art membranes by at least an order of magnitude while simultaneously maintaining an acceptable selectivity. In particular, a thicker membrane featuring longer zeolite nanotubes exhibits a higher permeance due to the presence of more selective pores. The proposed membrane design is expected to be broadly applied to other gas separations and even desalination as long as zeolitic nanotubes with customized pores are available.

10.
Small ; 20(25): e2310158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573962

ABSTRACT

The integration of one-selector-one-resistor crossbar arrays requires the selectors featured with high nonlinearity and bipolarity to prevent leakage currents and any crosstalk among distinct cells. However, a selector with sufficient nonlinearity especially in the frame of device miniaturization remains scarce, restricting the advance of high-density storage devices. Herein, a high-performance memory selector is reported by constructing a graphene/hBN/WSe2 heterostructure. Within the temperature range of 300-80 K, the nonlinearity of this selector varies from ≈103 - ≈104 under forward bias, and increases from ≈300 - ≈105 under reverse bias, the highest reported nonlinearity among 2D selectors. This improvement is ascribed to direct tunneling at low bias and Fowler-Nordheim tunneling at high bias. The tunneling current versus voltage curves exhibit excellent bipolarity behavior because of the comparable hole and electron tunneling barriers, and the charge transport polarity can be effectively tuned from N-type or P-type to bipolar by simply changing source-drain bias. In addition, the conceptual memory selector exhibits no sign of deterioration after 70 000 switching cycles, paving the way for assembling 2D selectors into modern memory devices.

11.
J Phys Chem Lett ; 15(6): 1719-1725, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38320267

ABSTRACT

Quantum trap, a quantum and thermal fluctuations-induced nonmonotonous potential, offers a chance to build up microscopic mechanical systems completely dominated by fluctuations. Here, we explore the physical limit of the effective damping ratio of the nonlinear Brownian oscillator in a quantum trap, set by the finite separation for avoiding molecular-scale effects on the trap potential and the surface confinement effect-induced diverging damping and random forces. The quasiharmonic approximations and Langevin dynamics simulations show that the lowest effective damping ratios of the suspended Au plate and Au sphere upon a Teflon coating of 10 nm can be ∼210 and ∼145, respectively, at room temperature. Perforation is proposed as an effective route to reduce the damping ratio (down to 6.4) by attenuating the surface confinement effect. An unexpected result due to the temperature dependences of dielectric function and viscosity of ethanol is a further reduced damping ratio at 400 K (1.3). The nonlinear Brownian oscillator in the quantum trap shows promise of probing near-boundary hydrodynamics at nanoscale.

12.
Natl Sci Rev ; 11(2): nwad279, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213527

ABSTRACT

Graphene is one of the most promising candidates for integrated circuits due to its robustness against short-channel effects, inherent high carrier mobility and desired gapless nature for Ohmic contact, but it is difficult to achieve satisfactory on/off ratios even at the expense of its carrier mobility, limiting its device applications. Here, we present a strategy to realize high back-gate switching ratios in a graphene monolayer with well-maintained high mobility by forming a vertical heterostructure with a black phosphorus multi-layer. By local current annealing, strain is introduced within an established area of the graphene, which forms a reflective interface with the rest of the strain-free area and thus generates a robust off-state via local current depletion. Applying a positive back-gate voltage to the heterostructure can keep the black phosphorus insulating, while a negative back-gate voltage changes the black phosphorus to be conductive because of hole accumulation. Then, a parallel channel is activated within the strain-free graphene area by edge-contacted electrodes, thereby largely inheriting the intrinsic carrier mobility of graphene in the on-state. As a result, the device can provide an on/off voltage ratio of >103 as well as a mobility of ∼8000 cm2 V-1 s-1 at room temperature, meeting the low-power criterion suggested by the International Roadmap for Devices and Systems.

13.
Adv Mater ; 36(12): e2209825, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36751106

ABSTRACT

Personal thermal management can effectively manage the skin microenvironment, improve human comfort, and reduce energy consumption. In personal thermal-management technology, owing to the high latent heat of water evaporation in wet-response textiles, heat- and moisture-transfer coexist and interact with each other. In the last few years, with rapid advances in materials science and innovative polymers, humidity-sensitive textiles have been developed for personal thermal management. However, a large gap exists between the conceptual laboratory-scale design and actual textile. Here, moisture-responsive textiles based on flap opening and closing, those based on yarn/fiber deformation, and sweat-evaporation regulation based on textile design for personal thermoregulation are reviewed, and the corresponding mechanisms and research progress are discussed. Finally, the existing engineering and scientific limitations and future developments are considered to resolve the existing issues and accelerate the practical application of moisture-responsive textiles and related technologies.

14.
Adv Mater ; 36(12): e2211165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36708103

ABSTRACT

Atmospheric water is ubiquitous on earth and extensively participates in the natural water cycle through evaporation and condensation. This process involves tremendous energy exchange with the environment, but very little of the energy has so far been harnessed. The recently emerged hydrovoltaic technology, especially moisture-induced electricity, shows great potential in harvesting energy from atmospheric water and gives birth to moisture energy harvesting devices. The device performance, especially the long-term operational capacity, has been significantly enhanced over the past few years. Further development; however, requires in-depth understanding of mechanisms, innovative materials, and ingenious system designs. In this review, beginning with describing the basic properties of water, the key aspects of the water-hygroscopic material interactions and mechanisms of power generation are discussed. The current material systems and advances in promising material development are then summarized. Aiming at the chief bottlenecks of limited operational time, advanced system designs that are helpful to improve device performance are listed. Especially, the synergistic effect of moisture adsorption and water evaporation on material and system levels to accomplish sustained electricity generation is discussed. Last, the remaining challenges are analyzed and future directions for developing this promising technology are suggested.

15.
Langmuir ; 40(1): 714-720, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38154109

ABSTRACT

Charge exchange and transfer between water and low-dimensional materials are critical for water-related nanogenerators to harvest electricity from water. By first-principles calculations and molecular dynamics simulations, the interface interaction and charge transfer between ion-containing or pure water and two-dimensional (2D) van der Waals monolayers including transition metal dichalcogenides, hexagonal boron nitride, and graphene have been systematically investigated. Applying uniaxial tensile strain or the introduction of defects on 2D monolayers could significantly enhance the interface interaction and charge transfer from 2D monolayers to water molecules, as the tensile strain or defect weakens the bonds of 2D monolayers and changes the hydrogen bond networks in the interfacial water layer. In contrast, the presence of ions in water suppresses the charge transfer from 2D monolayers to water molecules and reduces interfacial adhesion because of the formation of hydrated ions and stronger charge exchange between ions and water molecules. These results reveal the role of strain, defect, and ion in dominating the charge exchange and transfer between water and 2D monolayers.

16.
ACS Appl Mater Interfaces ; 16(1): 1892-1898, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150743

ABSTRACT

Utilizing moving droplets to generate electricity has garnered significant attention due to its high output voltage and power. However, the understanding of energy dissipation and conversion processes during droplet movement remains limited, hindering the development of effective ways to further enhance the device's performance. In this study, we developed a method to simultaneously evaluate the input mechanical energy and output electrical energy while droplets slide on a poly(tetrafluoroethylene) (PTFE) surface to assess the energy conversion process. The influences of ion concentration, droplet volume, and contact area with PTFE on the energy conversion efficiency were investigated, suggesting optimized parameters. Moreover, by introduction of an asymmetric electric field on the PTFE surface, the input mechanical energy can be significantly reduced. In combination with the enhanced electrical output originating from improved surface charge density, the energy conversion efficiency is improved by an order of magnitude from 0.61 to 9.08%. These results shed light on strategies to improve device performance based on moving droplets.

17.
J Phys Chem B ; 128(1): 350-357, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38151461

ABSTRACT

Casimir torque between parallel plates, a macroscopic quantum electrodynamics effect, is known to be induced by dielectric anisotropy and related to the rotational degree of freedom. We here reveal a different type of Casimir torque generated on a Au plate suspended in a quantum trap without recourse to materials anisotropy. As the Au plate deflects from the equilibrium plane with a nonzero flipping angle, the regions departing from and approaching the Teflon-coated Au substrate are subjected to attractive and repulsive Casimir forces, respectively, resulting in a restoring torque about the axis of flipping. For a quantum trap with an equilibrium separation of ∼10 nm, the stiffness per unit area of the Casimir flipping torque can be an order of magnitude larger than those of previously reported dielectric anisotropy-induced rotational torques at the same separation. The large Casimir flipping torque provides the possibility of designing a mechanical oscillator completely dominated by quantum and thermal fluctuations.

18.
ACS Appl Mater Interfaces ; 15(50): 58388-58396, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051634

ABSTRACT

Using non-noble metal atoms as catalysts is attractive for decreasing the cost of the CO2 reduction reaction (CO2RR). By screening first-row transition metals and noble metals through extensive first-principles calculations, non-noble Sc and Ti single atoms binding on vacancy-defected transition metal dichalcogenide (TMD) monolayers exhibit better catalytic performance and selectivity for electrochemical CO2RR than noble metal single atoms. The overpotentials of Sc and Ti atoms for the CO2RR can be reduced lower than 0.09 V after applying suitable biaxial tensile strains on vacancy-defected TMDs, which are approximately 1 order of magnitude lower than that of most reported metal atom catalysts. The vacancy defects of TMDs and charge transfer to metal atoms induced by tensile strain play a key role in improving the catalytic activity of non-noble metal single atoms. These results highlight a possible way to design new single atom catalysts for electrochemical CO2RR by utilizing the combination of non-noble metal atoms, defected TMDs, and strain engineering.

19.
Sci Adv ; 9(46): eadi2993, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37967189

ABSTRACT

Hydrovoltaic technology has achieved notable breakthroughs in electric output via using the moving boundary of electric double layer, but the output voltage induced by droplets is saturated around 350 volts, and the underlying mechanism remains to be further clarified. Here, we show that falling water droplets can stably spark an unprecedented voltage up to 1200 volts within microseconds that they contact an electrode placed on top of an electret surface, approaching the theoretical upper limit. This sparking potential can be explained and described by a comprehensive model considering the water-electrode contact dynamics from both the macroscale droplet spreading and the microscale electric double layer formation, as well as the presence of a circuit capacitance. It is demonstrated that a droplet-induced electric spark is sufficient to directly ionize gas at atmospheric pressure and split water into hydrogen and oxygen, showing wide application potential in fields of green energy and intelligence.

20.
Article in English | MEDLINE | ID: mdl-38019552

ABSTRACT

Photodetectors based on semiconductor devices have been widely used to sense light position, intensity, and wavelength. However, monitoring the motion velocity of a light beam generally requires complex integration of device arrays. Here, we report a single device of a simple metal-insulator-semiconductor structure for self-powered sensing not only position but also velocity of a light beam or shadow. A velocity-dependent voltage output between two terminals of the metal is observed. It is attributed to light illumination-induced local surface potential change in semiconductors and the following movement of local charges accumulated in the metal due to capacitive coupling. The amplitude of the velocity-dependent voltage can be facilely modulated by applying a gate voltage. These results shed light on compact devices with multiple sensing functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...