Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(24): 17075-17082, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38842020

ABSTRACT

The topological and magnetic properties induced by topological defects in graphene have attracted attention. Here, we study a novel topological defect structure for graphene nanoribbons interspersed with C558-line defects along the armchair boundary, which possesses topological properties and is tritopic. Using strain engineering to regulate the magnitude of hopping at defects, the position of the energy level can be easily changed to achieve a topological phase transition. We also discuss the local magnetic moment and the ferromagnetic ground state in the context of line defects. This leads to spin polarization of the whole system. Finally, when C558 graphene nanoribbons are controlled by a nonlocal exchange magnetic field, spin-polarized quantum conductivity occurs near the Fermi level. Consequently, spin filtering can be achieved by varying the incident energy of the electrons. Our results provide new insights into realizing topological and spin electronics in low-dimensional quantum devices.

2.
Phys Chem Chem Phys ; 24(28): 17337-17347, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35819058

ABSTRACT

AEIn2As2 (AE = Ca, Sr, Ba), as a new crucial nonmagnetic thermoelectric candidate, needs to be understood in terms of its potential electronic structure properties and topological characteristics in both experimental and theoretical studies. Here we report that AEIn2As2 with Zintl phases will undergo insulator-metal phase transition and topological quantum phase transition under pressure modulation based on first-principles calculations. Firstly, band inversion occurred between the In(As)-s and As(In)-p states in the structures of AEIn2As2 with the P63/mmc space group in the absence of pressure and identified that they are all non-trivial topological insulators. Next, Bader charge and AIM topology analysis elucidate the nature of pressure-induced chemical bond enhancement. Lastly, we have discovered pressure-controllable band gap closure while the topologically protected surface states disappear, realizing insulator-metal phase transition and topological quantum phase transition. Our research not only enriches the family of topological insulators but also provides a good platform for the study of thermoelectric properties.

3.
J Phys Condens Matter ; 34(12)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34936997

ABSTRACT

In recent years, the discovery of 'magic angle' graphene has given new inspiration to the formation of heterojunctions. Similarly, the use of hexagonal boron nitride, known as white graphene, as a substrate for graphene devices has more aroused great interest in the graphene/hexagonal boron nitride heterostructure system. Based on the first principles method of density functional theory, the band structure, density of states, Mulliken population, and differential charge density of a tightly packed model of twisted graphene/hexagonal boron nitride/graphene sandwich structure have been studied. Through the establishment of heterostructure models twisted bilayer-graphene inserting hBN with different twisted angles, it was found that the band gap, Mulliken population, and charge density, exhibited specific evolution regulars with the rotation angle of the upper graphene, showing novel electronic properties and realizing metal-insulator phase transition. We find that the particular value of the twist angle at which the metal-insulator phase transition occurs and propose a rotational regulation mechanism with angular periodicity. Our results have guiding significance for the practical application of heterojunction electronic devices.

4.
ACS Appl Mater Interfaces ; 13(38): 45726-45735, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34520174

ABSTRACT

Hydrothermal deposition is emerging as a highly potential route for antimony-based solar cells, in which the Sb2(S,Se)3 is typically in situ grown on a common toxic CdS buffer layer. The narrow band gap of CdS causes a considerable absorption in the short-wavelength region and then lowers the current density of the device. Herein, TiO2 is first evaluated as an alternative Cd-free buffer layer for hydrothermally derived Sb2S3 solar cells. But it suffers from a severely inhomogeneous Sb2S3 coverage, which is effectively eliminated by inserting a Zn(O,S) layer. The surface atom of sulfur in Zn(O,S) uniquely provides a chemical bridge to enable the quasi-epitaxial deposition of Sb2S3 thin film, confirming by both morphology and binding energy analysis using DFT. Then the results of the first-principles calculations also show that Zn(O,S)/Sb2S3 has a more stable structure than TiO2/Sb2S3. The resultant perfect Zn(O,S)/Sb2S3 junction, with a suitable band alignment and excellent interface contact, delivers a remarkably enhanced JSC and VOC for Sb2S3 solar cells. The device efficiency with the TiO2/Zn(O,S) buffer layer boosts from 0.54% to 3.70% compared with the counterpart of TiO2, which has a champion efficiency of Cd-free Sb2S3 solar cells with a structure of ITO/TiO2/Zn(O,S)/Sb2S3/Carbon/Ag by in situ hydrothermal deposition. This work provides a guideline for the hydrothermal deposition of antimony-based films upon a nontoxic buffer layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...