Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39120388

ABSTRACT

The achievement of size uniformity and monodispersity in perovskite quantum dots (QDs) requires the implementation of precise temperature control and the establishment of optimal reaction conditions. Nevertheless, the accurate control of a range of reaction variables represents a considerable challenge. This study addresses the aforementioned challenge by employing manganese (Mn) doping to achieve size uniformity in CsPbBr3 perovskite QDs without the necessity for the precise control of the reaction conditions. By optimizing the Mn:Pb ratio, it is possible to successfully dope CsPbBr3 QDs with the appropriate concentrations of Mn²âº and achieve a uniform size distribution. The spectroscopic measurements on single QDs indicate that the appropriate Mn²âº concentrations can result in a narrower spectral linewidth, a longer photoluminescence (PL) lifetime, and a reduced biexciton Auger recombination rate, thus positively affecting the PL properties. This study not only simplifies the size control of perovskite QDs but also demonstrates the potential of Mn-doped CsPbBr3 QDs for narrow-linewidth light-emitting diode applications.

2.
Insights Imaging ; 15(1): 210, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145877

ABSTRACT

OBJECTIVES: To evaluate the diagnostic accuracy of liver dual-layer spectral-detector CT (SDCT) derived parameters of liver parenchyma for grading steatosis with reference to magnetic resonance imaging-based proton density fat fraction (MRI-PDFF). METHODS: Altogether, 320 consecutive subjects who underwent MRI-PDFF and liver SDCT examinations were recruited and prospectively enrolled from four Chinese hospital centers. Participants were classified into normal (n = 152), mild steatosis (n = 110), and moderate/severe(mod/sev) steatosis (n = 58) groups based on MRI-PDFF. SDCT liver parameters were evaluated using conventional polychromatic CT images (CTpoly), virtual mono-energetic images at 40 keV (CT40kev), the slope of the spectral attenuation curve (λ), the effective atomic number (Zeff), and liver to spleen attenuation ratio (L/S ratio). Linearity between SDCT liver parameters and MRI-PDFF was examined using Spearman correlation. Cutoff values for SDCT liver parameters in determining steatosis grades were identified using the area under the receiver-operating characteristic curve analyses. RESULTS: SDCT liver parameters demonstrated a strong correlation with PDFF, particularly Zeff (rs = -0.856; p < 0.001). Zeff achieved an area under the curve (AUC) of 0.930 for detecting the presence of steatosis with a sensitivity of 89.4%, a specificity of 82.4%, and an AUC of 0.983 for detecting mod/sev steatosis with a sensitivity of 93.1%, a specificity of 93.5%, the corresponding cutoff values were 7.12 and 6.94, respectively. Zeff also exhibited good diagnostic performance for liver steatosis grading in subgroups, independent of body mass index. CONCLUSION: SDCT liver parameters, particularly Zeff, exhibit excellent diagnostic accuracy for grading steatosis. CRITICAL RELEVANCE STATEMENT: Dual-layer SDCT parameter, Zeff, as a more convenient and accurate imaging biomarker may serve as an alternative indicator for MRI-based proton density fat fraction, exploring the stage and prognosis of liver steatosis, and even metabolic risk assessment. KEY POINTS: Liver biopsy is the standard for grading liver steatosis, but is limited by its invasive nature. The diagnostic performance of liver steatosis using SDCT-Zeff outperforms conventional CT parameters. SDCT-Zeff accurately and noninvasively assessed the grade of liver steatosis.

3.
Int Immunopharmacol ; 140: 112852, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39106715

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a major 21st-century epidemic. T2DM elevates the risk of myocardial infarction and heart failure while also reducinges survival rates. Recently Ferroptosis has been found to be involved in the development of various cardiovascular diseases. TRPV1 is also a potential therapeutic target for cardioprotection. This study explores whether capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist, can prevent diabetic myocardial infarction-induced injury by inhibiting ferroptosis. METHODS: T2DM model was induced by high-fat diet (HFD) feeding combined with streptozocin (STZ) injections, and the diabetic mice were treated with capsaicin(0.015 %) in their food. Myocardial infarction model was established as well. Mouse' general characteristics, cardiac function, and morphological histology were observed and analyzed. RNA-seq was used to investigate the possible mechanism of injury in AC16 cardiomyocytes cultured with high glucose and hypoxia. In addition, the potential mechanism of capsaicin against injury was further investigated in AC16 cardiomyocytes cultured with high glucose and hypoxia. RESULTS: The RNA-seq analysis revealed that ferroptosis was associated with cell death induced by high-glucose in combination with hypoxia, and CAP treatment could effectively inhibit ferroptosis to enhance cell survival. In vivo studies demonstrated that CAP treatment significantly improved post-MI cardiac function, attenuated myocardial inflammation and fibrosis. Furthermore, it was observed that CAP reduced ferroptosis levels by activating TRPV1 in the heart, upregulating Nrf2 expression, promoting Nrf2 nuclear translocation and increasing the expression of the Nrf2 downstream molecule Heme oxygenase-1 (HMOX1). CONCLUSIONS: Dietary capsaicin may inhibit cardiomyocyte ferroptosis through activation of myocardial TRPV1 and Nrf2/HMOX1 signaling pathway, which in turn exerts a protective effect on the myocardium after myocardial infarction in type 2 diabetic mice.


Subject(s)
Capsaicin , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Ferroptosis , Heme Oxygenase-1 , Mice, Inbred C57BL , Myocardial Infarction , NF-E2-Related Factor 2 , Signal Transduction , TRPV Cation Channels , Animals , NF-E2-Related Factor 2/metabolism , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Capsaicin/therapeutic use , Capsaicin/pharmacology , Ferroptosis/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Mice , Male , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Heme Oxygenase-1/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Diet, High-Fat/adverse effects , Cell Line , Humans , Membrane Proteins
4.
Bioorg Chem ; 150: 107552, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901280

ABSTRACT

As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.


Subject(s)
Fluorescent Dyes , Hydrogen Peroxide , Zebrafish , Animals , Hydrogen Peroxide/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship , Optical Imaging , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Dose-Response Relationship, Drug , Mice , Cell Survival/drug effects
5.
Environ Res ; 252(Pt 4): 119135, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38740291

ABSTRACT

Cyhalofop-butyl (CB) poses a significant threat to aquatic organisms, but there is a discrepancy in evidence about hepatotoxicity after prolonged exposure to environmental levels. The aim of this study was to investigate long-term hepatotoxicity and its effects on the gut-liver axis through the exposure of zebrafish to environmental concentrations of CB (0.1,1,10 µg/L) throughout their life cycle. Zebrafish experienced abnormal obesity symptoms and organ index after a prolonged exposure of 120 days. The gut-liver axis was found to be damaged both morphologically and functionally through an analysis of histology, electron microscopy subcellular structure, and liver function. The disruption of the gut-liver axis inflammatory process by CB is suggested by the rise in inflammatory factors and the alteration of inflammatory genes. Furthermore, there was a noticeable alteration in the blood and gut-liver axis biochemical parameters as well as gene expression linked to lipid metabolism, which may led to an imbalance in the gut flora. In conclusion, the connection between the gut-liver axis, intestinal microbiota, and liver leads to the metabolic dysfunction of zebrafish exposed to long-term ambient concentrations of CB, and damaged immune system and liver lipid metabolism. This study gives another knowledge into the hepatotoxicity component of long haul openness to ecological centralization of CB, and might be useful to assess the potential natural and wellbeing dangers of aryloxyphenoxypropionate herbicides.


Subject(s)
Liver , Water Pollutants, Chemical , Zebrafish , Animals , Liver/drug effects , Liver/pathology , Water Pollutants, Chemical/toxicity , Chemical and Drug Induced Liver Injury/pathology , Gastrointestinal Microbiome/drug effects , Lipid Metabolism/drug effects
6.
Cancer Sci ; 115(5): 1388-1404, 2024 May.
Article in English | MEDLINE | ID: mdl-38480275

ABSTRACT

Glioblastoma (GBM) is the most common malignant diffuse glioma of the brain. Although immunotherapy with immune checkpoint inhibitors (ICIs), such as programmed cell death protein (PD)-1/PD ligand-1 inhibitors, has revolutionized the treatment of several cancers, the clinical benefit in GBM patients has been limited. Lymphocyte-activation gene 3 (LAG-3) binding to human leukocyte antigen-II (HLA-II) plays an essential role in triggering CD4+ T cell exhaustion and could interfere with the efficiency of anti-PD-1 treatment; however, the value of LAG-3-HLA-II interactions in ICI immunotherapy for GBM patients has not yet been analyzed. Therefore, we aimed to investigate the expression and regulation of HLA-II in human GBM samples and the correlation with LAG-3+CD4+ T cell infiltration. Human leukocyte antigen-II was highly expressed in GBM and correlated with increased LAG-3+CD4+ T cell infiltration in the stroma. Additionally, HLA-IIHighLAG-3High was associated with worse patient survival. Increased interleukin-10 (IL-10) expression was observed in GBM, which was correlated with high levels of HLA-II and LAG-3+ T cell infiltration in stroma. HLA-IIHighIL-10High GBM associated with LAG-3+ T cells infiltration synergistically showed shorter overall survival in patients. Combined anti-LAG-3 and anti-IL-10 treatment inhibited tumor growth in a mouse brain GL261 tumor model. In vitro, CD68+ macrophages upregulated HLA-II expression in GBM cells through tumor necrosis factor-α (TNF-α). Blocking TNF-α-dependent inflammation inhibited tumor growth in a mouse GBM model. In summary, T cell-tumor cell interactions, such as LAG-3-HLA-II, could confer an immunosuppressive environment in human GBM, leading to poor prognosis in patients. Therefore, targeting the LAG-3-HLA-II interaction could be beneficial in ICI immunotherapy to improve the clinical outcome of GBM patients.


Subject(s)
Antigens, CD , Brain Neoplasms , CD4-Positive T-Lymphocytes , Glioblastoma , Lymphocyte Activation Gene 3 Protein , Up-Regulation , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Antigens, CD/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Female , Cell Line, Tumor , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Interleukin-10/metabolism , Tumor Microenvironment/immunology , Middle Aged
7.
Int Immunopharmacol ; 131: 111858, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492336

ABSTRACT

BACKGROUND: Diabetes is a global health problem whose common complication is diabetic cardiomyopathy, characterized by chronic inflammation of the heart muscle. Macrophages are the main white blood cells found in the resting heart. Therefore, we investigated the underling mechanism of macrophage on myocardial fibrosis in diabetes. METHODS: Here, echocardiography was utilized to evaluate cardiac function, and the degree of myocardial fibrosis was assessed using Masson's trichrome staining, followed by single-cell RNA sequencing (scRNA-seq) to analyze the phenotype, function, developmental trajectory, and interactions between immune cells, endothelial cells (ECs), and fibroblasts (FBs) in the hearts of db/db mice at different stages of diabetes. Macrophages and cardiac fibroblasts were also co-cultured in order to study the signaling between macrophages and fibroblasts. RESULTS: We found that with the development of diabetes mellitus, myocardial hypertrophy and fibrosis occurred that was accompanied by cardiac dysfunction. A significant proportion of immune cells, endothelial cells, and fibroblasts were identified by RNA sequencing. The most significant changes observed were in macrophages, which undergo M1 polarization and are critical for oxidative stress and extracellular matrix (ECM) formation. We further found that M1 macrophages secreted interleukin-1ß (IL-1ß), which interacted with the receptor on the surface of fibroblasts, to cause myocardial fibrosis. In addition, crosstalk between M1 macrophages and endothelial cells also plays a key role in fibrosis and immune response regulation through IL-1ß and corresponding receptors. CONCLUSIONS: M1 macrophages mediate diabetic myocardial fibrosis through interleukin-1ß interaction with fibroblasts.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Mice , Animals , Interleukin-1beta , Endothelial Cells , Macrophages , Fibrosis
8.
Ecotoxicol Environ Saf ; 275: 116246, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38537478

ABSTRACT

Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 µg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.


Subject(s)
Carps , Ferroptosis , Animals , Cadmium/metabolism , Carps/metabolism , Hemolysis , Liver , Inflammation/chemically induced , Inflammation/metabolism , Homeostasis , Iron/metabolism
9.
Nat Commun ; 15(1): 1646, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388532

ABSTRACT

Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.


Subject(s)
Adipocytes, Beige , Adipogenesis , Animals , Male , Mice , Adipocytes/metabolism , Adipocytes, Beige/metabolism , Adipogenesis/genetics , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Macrophages/metabolism , Obesity/metabolism , Thermogenesis/genetics
10.
Small ; 20(23): e2309134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38150666

ABSTRACT

Almost all colloidal quantum dots (QDs) exhibit undesired photoluminescence (PL) blinking, which poses a significant obstacle to their use in numerous luminescence applications. An in-depth study of the blinking behavior, along with the associated mechanisms, can provide critical opportunities for fabricating high-quality QDs for diverse applications. Here the blinking of a large series of colloidal QDs is investigated with different surface ligands, particle sizes, shell thicknesses, and compositions. It is found that the blinking behavior of single alloyed CdSe/ZnS QDs with a shell thickness of up to 2 nm undergoes an irreversible conversion from Auger-blinking to band-edge carrier blinking (BC-blinking). Contrastingly, single perovskite QDs with particle sizes smaller than their Bohr diameters exhibit reversible conversion between BC-blinking and more pronounced Auger-blinking. Changes in the effective trapping sites under different excitation conditions are found to be responsible for the blinking type conversions. Additionally, changes in shell thickness and particle size of QDs have a significant effect on the blinking type conversions due to altered wavefunction overlap between excitons and effective trapping sites. This study elucidates the discrepancies in the blinking behavior of various QD samples observed in previous reports and provides deeper understanding of the mechanisms underlying diverse types of blinking.

11.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(7): 736-740, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37545452

ABSTRACT

OBJECTIVE: To establish a prediction model of acute kidney injury (AKI) in moderate and severe burn patients, so as to provide basic research evidence for early identification of burn-related AKI. METHODS: Patients who were admitted to the department of plastic burn surgery of the Affiliated Hospital of Southwest Medical University from November 2018 to January 2021 were selected, and their clinical characteristics, laboratory examinations and other indicators were recorded. Multivariate Logistic regression analysis was used to screen out the risk factors of AKI related to moderate and severe burns, and R software was used to establish the nomogram of moderate and severe burn patients complicated with AKI. The Bootstrap method model was used for internal verification by repeating sample for 1 000 times. Consistency index and calibration curve were used to evaluate the accuracy of the model, and the receiver operator characteristic curve (ROC curve) and the area under the curve (AUC) were used to evaluate the prediction efficiency, decision curve analysis (DCA) was used to evaluate the clinical utility of the model. RESULTS: A total of 186 patients with moderate and severe burn were included, among which 54 patients suffered from AKI, and the incidence rate was 29.03%. Multivariate Logistic regression analysis showed that the total burn surface area [TBSA; odds ratio (OR) = 1.072, 95% confidence interval (95%CI) was 1.031-1.115, P = 0.001], estimated glomerular filtration rate (eGFR; OR = 0.960, 95%CI was 0.931-0.990, P = 0.010), neutrophil (NEU; OR = 1.190, 95%CI was 1.021-1.386, P = 0.026), neutrophil/lymphocyte ratio (NLR; OR = 0.867, 95%CI was 0.770-0.977, P = 0.019), D-dimer (OR = 4.603, 95%CI was 1.792-11.822, P = 0.002) were the risk factors for patients with moderate and severe burn complicated with AKI. Taking the above indexes as predictive factors, a nomogram prediction model was established, the ROC curve was plotted with AUC of 0.998 (95%CI was 0.988-1.000). Optimum threshold of ROC curve was -0.862, the sensitivity was 98.0% and the specificity was 98.2%, and the consistency index was 0.998 (95%CI was 0.988-1.000). The calibration curve showed that the prognostic nomogram model was accurate, DCA showed that most patients can benefit from this model. CONCLUSIONS: The burned patients with higher TBSA, NEU, NLR, D-dimer and lower eGFR tend to suffer from AKI. The nomogram based on the above five risk factors has high accuracy and clinical value, which can be used as a predictive tool to evaluate the risk of AKI in moderate and severe burn patients.


Subject(s)
Acute Kidney Injury , Burns , Humans , Prognosis , Nomograms , Retrospective Studies , Burns/complications , Acute Kidney Injury/etiology , ROC Curve
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(7): 642-648, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37403724

ABSTRACT

Objective To express the monkeypox virus (MPXV) A23R protein in Escherichia coli and purify by Ni-NTA affinity column, and to prepare mouse antiserum against MPXV A23R. Methods The recombinant plasmid pET-28a-MPXV-A23R was constructed and transformed into Escherichia coli BL21 to induce the expression of A23R protein. After optimizing the conditions of expression, A23R protein was highly expressed. Recombinant A23R protein was purified by Ni-NTA affinity column and identified by Western blot analysis. The purified protein was used to immunize mice for preparing the A23R polyclonal antibody, and the antibody titer was detected by ELISA. Results The expression of A23R recombinant protein reached the peak under the induced conditions of 0.6 mmol/L isopropyl-ß-D-thiogalactoside (IPTG), 37 DegreesCelsius and 20 hours. The purity of the protein was about 96.07% and was identified by Western blot analysis. The mice were immunized with recombinant protein, and the titer of antibody reached 1:102 400 at the 6th week after immunization. Conclusion MPXV A23R is expressed highly and purified with a high purity and its antiserum from mouse is obtained with a high titre.


Subject(s)
Antibodies , Monkeypox virus , Animals , Mice , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Recombinant Proteins , Escherichia coli/genetics
13.
Microb Cell Fact ; 22(1): 127, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443029

ABSTRACT

BACKGROUND: Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest. RESULTS: A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.1223 and was characterized by its effective activation of silent biosynthetic genes and high efficiency of heterologous gene expression. The promoter stnYp showed the highest activity in model strains of four Streptomyces species compared with the three frequently used constitutive promoters ermEp*, kasOp*, and SP44. The promoter stnYp could efficiently activate the indigoidine biosynthetic gene cluster in S. albus J1074, which is thought to be silent under routine laboratory conditions. Moreover, stnYp was found suitable for heterologous gene expression in different Streptomyces hosts. Compared with the promoters ermEp*, kasOp*, and SP44, stnYp conferred the highest production level of diverse metabolites in various heterologous hosts, including the agricultural-bactericide aureonuclemycin and the antitumor compound YM-216391, with an approximately 1.4 - 11.6-fold enhancement of the yields. Furthermore, the purity of tylosin A was greatly improved by overexpressing rate-limiting genes through stnYp in the industrial strain. Further, the yield of tylosin A was significantly elevated to 10.30 ± 0.12 g/L, approximately 1.7-fold higher than that of the original strain. CONCLUSIONS: The promoter stnYp is a reliable, well-defined promoter with strong activity and broad suitability. The findings of this study can expand promoter diversity, facilitate genetic manipulation, and promote metabolic engineering in multiple Streptomyces species.


Subject(s)
Biological Products , Streptomyces , Tylosin/metabolism , Biological Products/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Promoter Regions, Genetic , Multigene Family
14.
J Adv Res ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37423549

ABSTRACT

BACKGROUND: Bovine milk is a significant substitute for human breast milk and holds great importance in infant nutrition and health. Apart from essential nutrients, bovine milk also contains bioactive compounds, including a microbiota derived from milk itself rather than external sources of contamination. AIM OF REVIEW: Recognizing the profound impact of bovine milk microorganisms on future generations, our review focuses on exploring their composition, origins, functions, and applications. KEY SCIENTIFIC CONCEPTS OF REVIEW: Some of the primary microorganisms found in bovine milk are also present in human milk. These microorganisms are likely transferred to the mammary gland through two pathways: the entero-mammary pathway and the rumen-mammary pathway. We also elucidated potential mechanisms by which milk microbiota contribute to infant intestinal development. The mechanisms include the enhancing of the intestinal microecological niche, promoting the maturation of immune system, strengthening the intestinal epithelial barrier function, and interacting with milk components (e.g., oligosaccharides) via cross-feeding effect. However, given the limited understanding of bovine milk microbiota, further studies are necessary to validate hypotheses regarding their origins and to explore their functions and potential applications in early intestinal development.

15.
BJS Open ; 7(2)2023 03 07.
Article in English | MEDLINE | ID: mdl-37115653

ABSTRACT

BACKGROUND: This prospective study investigated whether a single dose of intravenous lidocaine could alleviate tourniquet hypertension in patients undergoing ambulatory arthroscopy under general anaesthesia. METHODS: Patients aged 18-65 years undergoing knee arthroscopy under general anaesthesia were randomly divided into the lidocaine group (L group) and the normal saline group (N group). Patients received an intravenous injection 10 min before tourniquet inflation of either 1.5mg/kg lignocaine made up to 10ml with 0.9 per cent normal saline, or 10ml of 0.9 per cent normal saline. The primary outcome was the incidence of tourniquet hypertension. Secondary outcomes included haemodynamic changes, degree of elevation of blood pressure, changes in serum inflammatory indicators including interleukin 6 and tumour necrosis factor-α, the numerical rating scale, 15-item quality of recovery after surgery, the incidence of adverse events and the duration of hospital stay. Randomization was computer-generated with allocation concealment by sealed envelopes. Patients, caregivers and researchers were all blind to the allocation group throughout the study. RESULTS: Ninety-six patients were included in the study; 48 in each group. Compared with the N group, the incidence of tourniquet hypertension in the L group was significantly lower (37.5 per cent versus 68.8 per cent; P < 0.002). The degree of elevation of systolic blood pressure from baseline to the end of surgery in the L group was significantly lower than the N group (17.1 per cent versus 23.6 per cent; P = 0.020). The concentration of tumour necrosis factor-α in the L group 5 min after tourniquet deflation was lower than in the N group (32.12 pg/ml versus 39.89 pg/ml; P = 0.029). The median numerical rating scale of the L group was significantly lower at 6 h (0 versus 3.0; P = 0.003) and 24 h (0 versus 2.0; P < 0.001) after surgery. In the L group, the total 15-item quality of recovery was significantly increased (131 versus 128; P = 0.017). CONCLUSION: Single injection of intravenous lidocaine alleviated tourniquet hypertension in ambulatory arthroscopic patients under general anaesthesia. Intravenous lidocaine can inhibit tourniquet hypertension formation by reducing tumour necrosis factor-α release, and has beneficial effects on postoperative pain and recovery. REGISTRATION NUMBER: ChiCTR2200055551 (http://www.chictr.org.cn/edit.aspx? pid=148235&htm=4).


Subject(s)
Hypertension , Lidocaine , Humans , Lidocaine/therapeutic use , Tumor Necrosis Factor-alpha , Anesthetics, Local/therapeutic use , Tourniquets/adverse effects , Prospective Studies , Saline Solution , Hypertension/prevention & control , Hypertension/drug therapy , Hypertension/etiology , Anesthesia, General/adverse effects
16.
Lab Invest ; 103(3): 100034, 2023 03.
Article in English | MEDLINE | ID: mdl-36925198

ABSTRACT

Lung adenocarcinoma is the most common type of lung cancer. We recently reported that inflammation-driven lung adenocarcinoma (IDLA) originates from alveolar type (AT)-II cells, which depend on major histocompatibility complex (MHC) class II to promote the expansion of regulatory T cells. The MHC class II-associated invariant chain (CD74) binds to the macrophage migration inhibitory factor (MIF), which is associated with promoting tumor growth and invasion. However, the role of MIF-CD74 in the progression of lung adenocarcinoma and the underlying mechanisms remain unclear. We aimed to explore the role of MIF-CD74 in the progression of lung adenocarcinoma and elucidate the mechanisms by which tumor necrosis (TNF)-α-mediated inflammation regulates CD74 and MIF expression in IDLA. In human lung adenocarcinoma, CD74 was upregulated on the surface of tumor cells originating from AT-II cells, which correlated positively with lymph node metastasis, tumor origin/nodal involvement/metastasis stage, and TNF-α expression. MIF interaction with CD74 promoted the proliferation and migration of A549 and H1299 cells in vitro. Using a urethane-induced IDLA mouse model, we observed that CD74 was upregulated in tumor cells and macrophages. MIF expression was upregulated in macrophages in IDLA. Blocking TNF-α-dependent inflammation downregulated CD74 expression in tumor cells and CD74 and MIF expression in macrophages in IDLA. Conditioned medium from A549 cells or activated mouse AT-II cells upregulated MIF in macrophages by secreting TNF-α. TNF-α-dependent lung inflammation contributes to the progression of lung adenocarcinoma by upregulating CD74 and MIF expression, and AT-II cells upregulate MIF expression in macrophages by secreting TNF-α. This study provides novel insights into the function of CD74 in the progression of IDLA.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Macrophage Migration-Inhibitory Factors , Pneumonia , Animals , Humans , Mice , Histocompatibility Antigens Class II/metabolism , Inflammation/metabolism , Intramolecular Oxidoreductases , Lung Neoplasms/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Pneumonia/chemically induced , Pneumonia/metabolism , Tumor Necrosis Factor-alpha
17.
Brain Tumor Pathol ; 40(1): 15-25, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36550382

ABSTRACT

Pleomorphic xanthoastrocytoma (PXA) is a rare tumor ranging from World Health Organization (WHO) grades 2-3 and can potentially recur and metastasize throughout the central nervous system (CNS). Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion is a frequent genomic alteration of PXA. Methylthioadenosine phosphorylase (MTAP) immunohistochemistry is a promising surrogate marker for CDKN2A homozygous deletion in different cancers but has not been examined in PXA. Therefore, we performed CDKN2A fluorescence in situ hybridization and MTAP immunohistochemistry on specimens from 23 patients with CNS WHO grades 2 (n = 10) and 3 (n = 13) PXAs, including specimens from primary and recurrent tumors, and determined whether MTAP immunohistochemistry correlated with CDKN2A homozygous deletion and clinicopathological features. CDKN2A homozygous deletion was detected in 30% (3/10) and 76.9% (10/13) of CNS WHO grades 2 and 3 PXAs, respectively. In addition, MTAP loss was inconsistent with CDKN2A homozygous deletion (sensitivity = 86.7%, specificity = 100%). Furthermore, CDKN2A homozygous deletion was correlated with WHO grade (p = 0.026) and the Ki-67 labeling index (p = 0.037). Therefore, MTAP immunostaining can be a suitable surrogate marker for CDKN2A homozygous deletions in PXAs, and CDKN2A homozygous deletions may be an important prognostic factor for PXAs.


Subject(s)
Astrocytoma , Cyclin-Dependent Kinase Inhibitor p16 , Humans , Homozygote , In Situ Hybridization, Fluorescence , Gene Deletion , Sequence Deletion , Cyclin-Dependent Kinase Inhibitor p16/genetics , Astrocytoma/genetics
18.
Front Pharmacol ; 13: 931670, 2022.
Article in English | MEDLINE | ID: mdl-36532745

ABSTRACT

Objective: To investigate the role and mechanisms of action of nafamostat mesylate (NM) in rhabdomyolysis-induced acute kidney injury (RIAKI). Methods: RIAKI rats were assigned into control group (CN), RIAKI group (RM), and NM intervention group (NM). Inflammatory cytokines and proenkephalin a 119-159 (PENKID) were assessed. Cell apoptosis and glutathione peroxidase-4 (GPX4) were detected using TUNEL assay and immunohistochemical staining. Mitochondrial membrane potential (MMP) was detected by JC-1 dye. The expression of genes and metabolites after NM intervention was profiled using transcriptomic and metabolomic analysis. The differentially expressed genes (DEGs) were validated using qPCR. The KEGG and conjoint analysis of transcriptome and metabolome were used to analyze the enriched pathways and differential metabolites. The transcription factors were identified based on the animal TFDB 3.0 database. Results: Serum creatinine, blood urea nitrogen, and PENKID were remarkably higher in the RM group and lower in the NM group compared to the CN group. Pro-inflammatory cytokines increased in the RM group and notably decreased following NM treatment compared to the CN group. Tubular pathological damages were markedly attenuated and renal cell apoptosis was reduced significantly in the NM group compared to the RM group. The expression of GPX4 was lower in the RM group compared to the CN group, and it increased significantly after NM treatment. A total of 294 DEGs were identified in the RM group compared with the NM group, of which 192 signaling pathways were enriched, and glutathione metabolism, IL-17 signaling, and ferroptosis-related pathways were the top-ranking pathways. The transcriptional levels of Anpep, Gclc, Ggt1, Mgst2, Cxcl13, Rgn, and Akr1c1 were significantly different between the NM and RM group. Gclc was the key gene contributing to NM-mediated renal protection in RIAKI. Five hundred and five DEGs were annotated. Compared with the RM group, most of the upregulated DEGs in the NM group belonged to Glutathione metabolism, whereas most of the downregulated DEGs were related to the transcription factor Cytokine-cytokine receptor interaction. Conclusion: NM protects the kidneys against RIAKI, which is mainly associated with NM mediated regulation of glutathione metabolism, inflammatory response, ferroptosis-related pathways, and the related key DEGs. Targeting these DEGs might emerge as a potential molecular therapy for RIAKI.

19.
FASEB J ; 36(11): e22595, 2022 11.
Article in English | MEDLINE | ID: mdl-36205325

ABSTRACT

Chronic inflammation, which is dominated by macrophage-involved inflammatory responses, is an instigator of cancer initiation. Macrophages are the most abundant immune cells in healthy lungs, and associated with lung tumor development and promotion. PD-L1 is a negative molecule in macrophages and correlated with an immunosuppressive function in tumor environment. Macrophages expressing PD-L1, rather than tumor cells, exhibits a critical role in tumor growth and progression. However, whether and how PD-L1 in macrophages contributes to inflammation-induced lung tumorigenesis requires further elucidation. Here, we found that higher expression of PD-L1 in CD11b+ CD206+ macrophages was positively correlated with tumor progression and PD-1+ CD8+ T cells population in human adenocarcinoma patients. In the urethane-induced inflammation-driven lung adenocarcinoma (IDLA) mouse model, the infiltration of circulating CD11bhigh F4/80+ monocyte-derived macrophages (MoMs) was increased in pro-tumor inflamed lung tissues and lung adenocarcinoma. PD-L1 was mainly upregulated in MoMs associated with enhanced T cells exhaustion in lung tissues. Anti-PD-L1 treatment can reduce T cells exhaustion at pro-tumor inflammatory stage, and then inhibit tumorigenesis in IDLA. The pro-tumor lung inflammation depended on TNF-α to upregulate PD-L1 and CSN6 expression in MoMs, and induced cytokines production by alveolar type-II cells (AT-II). Furthermore, inflammatory AT-II cells could secret TNF-α to upregulate PD-L1 expression in bone-marrow driven macrophages (BM-M0). Inhibition of CSN6 decreased PD-L1 expression in TNF-α-activated macrophage in vitro, suggesting a critical role of CSN6 in PD-L1 upregulation. Thus, pro-tumor inflammation can depend on TNF-α to upregulate PD-L1 in recruited MoMs, which may be essential for lung tumorigenesis.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Pneumonia , Adenocarcinoma/pathology , Adenocarcinoma of Lung/metabolism , Animals , B7-H1 Antigen , CD8-Positive T-Lymphocytes/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/metabolism , Humans , Inflammation/metabolism , Lung/metabolism , Lung Neoplasms/metabolism , Macrophages/metabolism , Mice , Pneumonia/metabolism , Programmed Cell Death 1 Receptor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urethane/metabolism
20.
Foods ; 11(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35954125

ABSTRACT

Lu'an Guapian tea is produced through the processing of only leaves, with the stems and buds discarded, but stems constitute a large proportion of the tea harvest. To test the usability of tea stems, we compared the physicochemical properties of tea leaves and stems from the same growth period as well as the taste of their infusions. The leaves contained higher concentrations of polyphenols and caffeine and had a stronger taste. The tea stems contained higher concentrations of free amino acids and soluble sugars and were richer in umami and sweet flavors. In addition, more tender tea stems had higher concentrations of polyphenols, caffeine, and free amino acids, and their infusions had more refreshing and sweeter tastes. Furthermore, crude fiber content increased as stem tenderness decreased. In summary, tea stems are rich in phytochemical components and flavor, and these properties increased with tenderness. This provides a theoretical basis for the high-value utilization of tea stems.

SELECTION OF CITATIONS
SEARCH DETAIL