Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
World J Hepatol ; 16(4): 537-549, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38689749

ABSTRACT

The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.

2.
Heliyon ; 10(5): e26902, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444482

ABSTRACT

Human RAB39B gene is related to familial early-onset Parkinson disease. In early adulthood, men with the RAB39B c.503C > A (Thr168Lys, p. T168K) mutation develop typical tremor, bradykinesia, and alpha-synuclein accumulation. We investigated the pathological mechanism of RAB39B T168K in a Caenorhabditis elegans model. In early adult C. elegans, RAB39B T168K led to dopaminergic neuron degeneration that presented as disrupted dendrites and blunt neuronal cells. Abnormal dopamine secretion was inferred from a decline in motor function and a positive basal slowing phenotype. Dopamine-associated tests confirmed that synthesis and recycling of dopamine were normal. The RAB39B T168K mutation might impair dopamine vesicular transmission from the presynaptic membrane to the synaptic gap in dopaminergic neurons. The release-dependent feedback mechanism in neurotransmitters regulates the balance of receptor activities. Protein-protein interactions network analysis revealed that RAB39B may also function in lysosomal degradation and autophagy. Impaired disposal of misfolded α-synuclein eventually leads to protein aggregation. Thus, like other members of the Rab family, RAB39B may be involved in vesicular transport associated with dopamine secretion and α-synuclein clearance.

5.
NPJ Parkinsons Dis ; 10(1): 31, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296953

ABSTRACT

Aquaporin-4 (AQP4) is essential for normal functioning of the brain's glymphatic system. Impaired glymphatic function is associated with neuroinflammation. Recent clinical evidence suggests the involvement of glymphatic dysfunction in LRRK2-associated Parkinson's disease (PD); however, the precise mechanism remains unclear. The pro-inflammatory cytokine interferon (IFN) γ interacts with LRRK2 to induce neuroinflammation. Therefore, we examined the AQP4-dependent glymphatic system's role in IFNγ-mediated neuroinflammation in LRRK2-associated PD. We found that LRRK2 interacts with and phosphorylates AQP4 in vitro and in vivo. AQP4 phosphorylation by LRRK2 R1441G induced AQP4 depolarization and disrupted glymphatic IFNγ clearance. Exogeneous IFNγ significantly increased astrocyte expression of IFNγ receptor, amplified AQP4 depolarization, and exacerbated neuroinflammation in R1441G transgenic mice. Conversely, inhibiting LRRK2 restored AQP4 polarity, improved glymphatic function, and reduced IFNγ-mediated neuroinflammation and dopaminergic neurodegeneration. Our findings establish a link between LRRK2-mediated AQP4 phosphorylation and IFNγ-mediated neuroinflammation in LRRK2-associated PD, guiding the development of LRRK2 targeting therapy.

6.
Brain Sci ; 13(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37626522

ABSTRACT

BACKGROUND: Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS: Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS: A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS: Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.

7.
Neurosci Lett ; 813: 137426, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37544580

ABSTRACT

BACKGROUND: The synaptic vesicle glycoprotein 2 (SV2) has been implicated in synaptic function throughout the brain. Accumulating evidence investigated that SV2C contributed to dopamine release and the disrupted expression of SV2C was considered to be a unique feature of PD that may facilitate dopaminergic neuron dysfunction. OBJECTIVE: This study aimed to examine the relationship between the SV2C rs1423099 single nucleotide polymorphism and sporadic Parkinson's disease (PD) in the Chinese Han population. MATERIALS AND METHODS: This study enrolled 351 patients with sporadic PD and 240 normal controls in Chinese Han population. Peripheral blood DNA was extracted by DNA extraction kits and the rs1423099 genotype was analyzed by Agena MassARRAY DNA mass spectrometry. The differences in genotype and allele distribution frequencies between PD patients and control groups were compared using chi-squared tests or Fisher's exact tests. RESULTS: No statistical difference was revealed in age and sex distribution between the cases and control groups, and the distribution of genotype and allele frequencies was consistent with the Hardy-Weinberg equilibrium test. In SV2C rs1423099 dominant model, the frequency of the CC/CT genotype was significantly higher in the PD group compared to the control group (OR = 4.065,95% CI: 2.801-10.870, p = 0.002). Nevertheless, in the recessive model, CC or CT/TT genotypes have no statistical difference in the two groups (p = 0.09). Additionally, in allelic analysis, the C allele was investigated to increase the risk of PD (OR = 1.346, 95% CI: 1.036-1.745, p = 0.026); Furthermore, subgroup analysis suggested that those carrying the C allele in the male subgroup were at a higher risk to afflicted with PD (OR = 1.637, 95% CI: 1.147-2.336, p = 0.006). CONCLUSION: SV2C rs1423099 single nucleotide polymorphism was associated with sporadic Parkinson's disease in the Chinese Han population, particularly in males.


Subject(s)
Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Male , Case-Control Studies , China , Gene Frequency , Genetic Predisposition to Disease/genetics , Genotype , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Female
8.
Am J Transl Res ; 14(11): 7689-7704, 2022.
Article in English | MEDLINE | ID: mdl-36505341

ABSTRACT

Type I interferons (IFN) and their downstream effector signaling pathways play critical roles in the innate antiviral response. The underlying mechanisms that regulate IFN production and their effector signaling, especially by microRNAs, are well understood. We found that the expression of miR-93 was significantly downregulated by RNA virus infection in innate cells. miR-93 expression was also downregulated in influenza virus-infected patients. Furthermore, we showed that JAK1 is targeted by miR-93 to inhibit type I IFN's antiviral activity. Functionally, antagomir of miR-93 markedly reduced influenza virus replication in mice in vivo and prevented their death. Therefore, hosts recognize the invading RNA virus infection and activate RIG-I/JNK pathways to decrease miR-93 expression. The reduction of miR-93 feedback enhances the antiviral innate immune response by activating the IFN-JAK-STAT effectors type I, indicating miR-93 as a possible therapeutic target for infection with RNA viruses.

9.
Front Pharmacol ; 13: 956166, 2022.
Article in English | MEDLINE | ID: mdl-36188616

ABSTRACT

Objectives: Wuzhi Capsule (WZC) is often administrated with tacrolimus in liver transplant patients to reduce the toxicity of tacrolimus and relieve the financial burden of patients. We aimed to investigate the interaction between Wuzhi Capsule (WZC) and tacrolimus in liver transplant patients. Methods: We applied the LC-MS/MS analytical method previously established to study the pharmacokinetic characteristics of the analytes in 15 liver transplant patients. CYP3A5 genotypes were determined in 15 donors and recipients, and they were categorized into CYP3A5 expressers and non-expressers respectively. Results: The influences of CYP3A5 in donors and recipients on the pharmacokinetics of tacrolimus with or without WZC were also studied. We found that 1) WZC could influence the metabolism of tacrolimus, which shortened the Tmax of tacrolimus and decreased V/F and CL/F. 2) Moreover, our results showed that, in donors, the CL/F of tacrolimus were significantly lower in CYP3A5 (CYP3A5*1) expressers (decreased from 24.421 to 12.864) and non-expressers (decreased from 23.532 to 11.822) when co-administration with WZC. For recipients, the decreased trend of CL/F of tacrolimus was seen when co-administrated with WZC by 15.376 and 12.243 in CYP3A5 expressers and non-expressers, respectively. Conclusion: In this study, the pharmacokinetics effects of WZC on tacrolimus were identified. The co-administration of WZC can increase the tacrolimus blood concentration in Chinese liver transplant patients in clinical practice.

10.
Front Neurosci ; 16: 894454, 2022.
Article in English | MEDLINE | ID: mdl-35958994

ABSTRACT

Background: Recently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD. Methods: Serum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method. Results: Serum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534). Conclusion: Decreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.

11.
Comput Math Methods Med ; 2022: 4376654, 2022.
Article in English | MEDLINE | ID: mdl-35844455

ABSTRACT

Hepatobiliary malignancies, such as hepatocellular carcinoma (HCC) and biliary tract cancers, namely, gallbladder carcinoma and cholangiocarcinoma, are linked to a high rate of morbidity and mortality, depending on the phase of the disease. The intricate hepatobiliary anatomy and the need for accurate peroperative management, especially in patients with advanced liver disease, make these tumors difficult to treat. Surgical resection is a notable therapy for hepatobiliary cancers. Unnecessary or excessive liver excision influences patient rehabilitation, normal liver function, and postoperative complications. Hepatobiliary operations must therefore include accurate liver removal. The present advancements in imaging technology are aimed at improving the diagnostic efficacy of liver injury even more. Three-dimensional visual reconstruction is becoming more important in the diagnosis as well as treatment of a variety of disorders. In this paper, we proposed a novel three-dimensional visual reconstruction technology using enhanced nonuniform rational basis spline (ENURBS) combined with virtual surgical planning of Computed Tomography Angiography (CTA) images for precise liver cancer resection. The purpose of this project is to rebuild 2D CTA scan images of liver cancer into a 3D reconstructed model for efficient visualization and diagnosis of liver cancer and to prepare an effective preoperative surgical plan for precise liver excision based on a 3D recreated liver model. This method's performance is compared to that of 2D planning in terms of accuracy and time taken to complete the plan. It is concluded that our proposed technique outperforms the planning technique based on 2D images.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Computed Tomography Angiography , Humans , Imaging, Three-Dimensional/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Retrospective Studies , Technology
12.
Chin Med J (Engl) ; 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35830185

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's dementia. Mitochondrial dysfunction is involved in the pathology of PD. Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was identified as associated with autosomal dominant PD. However, the mechanism of CHCHD2 in PD remains unclear. METHODS: Short hairpin RNA (ShRNA)-mediated CHCHD2 knockdown or lentivirus-mediated CHCHD2 overexpression was performed to investigate the impact of CHCHD2 on mitochondrial morphology and function in neuronal tumor cell lines represented with human neuroblastoma (SHSY5Y) and HeLa cells. Blue-native polyacrylamide gel electrophoresis (PAGE) and two-dimensional sodium dodecyl sulfate-PAGE analysis were used to illustrate the role of CHCHD2 in mitochondrial contact site and cristae organizing system (MICOS). Co-immunoprecipitation and immunoblotting were used to address the interaction between CHCHD2 and Mic10. Serotype injection of adeno-associated vector-mediated CHCHD2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration were used to examine the influence of CHCHD2 in vivo. RESULTS: We found that the overexpression of CHCHD2 can protect against methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and inhibit the loss of dopaminergic neurons in the MPTP-induced mouse model. Furthermore, we identified that CHCHD2 interacted with Mic10, and overexpression of CHCHD2 can protect against MPP+-induced MICOS impairment, while knockdown of CHCHD2 impaired the stability of MICOS. CONCLUSION: This study indicated that CHCHD2 could interact with Mic10 and maintain the stability of the MICOS complex, which contributes to protecting mitochondrial function in PD.

13.
Hum Mol Genet ; 31(22): 3886-3896, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35766879

ABSTRACT

The D620N mutation in vacuolar protein sorting protein 35 (VPS35) gene has been identified to be linked to late onset familial Parkinson disease (PD). However, the pathophysiological roles of VPS35-D620N in PD remain unclear. Here, we generated the transgenic Caenorhabditis elegans overexpressing either human wild type or PD-linked mutant VPS35-D620N in neurons. C. elegans expressing VPS35-D620N, compared with non-transgenic controls, showed movement disorders and dopaminergic neuron loss. VPS35-D620N worms displayed more swimming induced paralysis but showed no defects in BSR assays, thus indicating the disruption of dopamine (DA) recycling back inside neurons. Moreover, VPS35 formed a protein interaction complex with DA transporter (DAT), RAB5, RAB11 and FAM21. In contrast, the VPS35-D620N mutant destabilized these interactions, thus disrupting DAT transport from early endosomes to recycling endosomes, and decreasing DAT at the cell surface. These effects together increased DA in synaptic clefts, and led to dopaminergic neuron degeneration and motor dysfunction. Treatment with reserpine significantly decreased the swimming induced paralysis in VPS35-D620N worms, as compared with vehicle treated VPS35-D620N worms. Our studies not only provide novel insights into the mechanisms of VPS35-D620N-induced dopaminergic neuron degeneration and motor dysfunction via disruption of DAT function and the DA signaling pathway but also indicate a potential strategy to treat VPS35-D620N-related PD and other disorders.


Subject(s)
Dopamine , Parkinson Disease , Animals , Humans , Dopamine/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Protein Transport , Dopaminergic Neurons/metabolism , Parkinson Disease/metabolism , Nerve Degeneration/pathology , Paralysis/genetics , Paralysis/metabolism , Paralysis/pathology
14.
Neurosci Bull ; 38(6): 637-651, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35267139

ABSTRACT

Previous studies suggest that the reduction of SMAD3 (mothers against decapentaplegic homolog 3) has a great impact on tumor development, but its exact pathological function remains unclear. In this study, we found that the protein level of SMAD3 was greatly reduced in human-grade IV glioblastoma tissues, in which LAMP2A (lysosome-associated membrane protein type 2A) was significantly up-regulated. LAMP2A is a key rate-limiting protein of chaperone-mediated autophagy (CMA), a lysosome pathway of protein degradation that is activated in glioma. We carefully analyzed the amino-acid sequence of SMAD3 and found that it contained a pentapeptide motif biochemically related to KFERQ, which has been proposed to be a targeting sequence for CMA. In vitro, we confirmed that SMAD3 was degraded in either serum-free or KFERQ motif deleted condition, which was regulated by LAMP2A and interacted with HSC70 (heat shock cognate 71 kDa protein). Using isolated lysosomes, amino-acid residues 75 and 128 of SMAD3 were found to be of importance for this process, which affected the CMA pathway in which SMAD3 was involved. Similarly, down-regulating SMAD3 or up-regulating LAMP2A in cultured glioma cells enhanced their proliferation and invasion. Taken together, these results suggest that excessive activation of CMA regulates glioma cell growth by promoting the degradation of SMAD3. Therefore, targeting the SMAD3-LAMP2A-mediated CMA-lysosome pathway may be a promising approach in anti-cancer therapy.


Subject(s)
Chaperone-Mediated Autophagy , Glioma , Lysosomal-Associated Membrane Protein 2 , Smad3 Protein , Autophagy/physiology , Cell Proliferation , Glioma/metabolism , Humans , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomes/metabolism , Smad3 Protein/metabolism
15.
Biopharm Drug Dispos ; 43(2): 76-85, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35220592

ABSTRACT

Tacrolimus is widely used in organ transplantation to prevent rejection. However, the narrow therapeutic window and the large inter-and intra-individual variability in the pharmacokinetics (PK) of tacrolimus make it difficult for individualization of dosing. This study aimed at developing a population pharmacokinetic model for estimating the oral clearance of tacrolimus in Chinese liver transplant patients, and identifying factors that contribute to the PK variability of tacrolimus. Data of 151 liver transplant patients who received tacrolimus were analyzed in this study. The population PK model was analyzed and the covariates including population demographic and biochemical characteristics, drug combination, and genetic polymorphism were explored using non-linear mixed-effects modeling approach. A single-compartment population PK model was developed, and the final model was CL/F = (14.6-2.38 × cytochrome P450 (CYP) 3A5-3.72 × WZC+1.04 × (POD/9)+2.48 × COR) × Exp(ηi ), where CYP3A5 was 1 for CYP3A5*3/*3, Wuzhi Capsule (WZC) was 1 when patients took tacrolimus combined with WZC, otherwise it was 0, corticosteroids (COR) was 1 when patients take tacrolimus combined with COR, otherwise, it was 0, POD was the post-operative day. Visual inspection and bootstrap indicated that the final model was stable and robust. In this study, we developed the first tacrolimus population PK model in Chinese adult liver transplant patients. We first determined the influence of WZC on tacrolimus in these people, which could provide useful PK information for the drug combination of tacrolimus and WZC. We also revealed the influence of genetic polymorphism of CYP3A5, POD, and a combination of COR on tacrolimus PK. Therefore, these significant factors should be taken into consideration in optimizing dosage regimens.


Subject(s)
Liver Transplantation , Tacrolimus , Adult , China , Cytochrome P-450 CYP3A/genetics , Genotype , Humans , Immunosuppressive Agents/pharmacokinetics , Models, Biological , Tacrolimus/pharmacokinetics
17.
Front Aging Neurosci ; 14: 1077738, 2022.
Article in English | MEDLINE | ID: mdl-36742201

ABSTRACT

Background: Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods: Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results: Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion: These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.

18.
Front Aging Neurosci ; 13: 753210, 2021.
Article in English | MEDLINE | ID: mdl-34658845

ABSTRACT

Background: Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor exclusively expressed in the central nervous system (CNS). It contributes to abnormal protein aggregation in neurodegenerative disorders, but its role in Parkinson's disease (PD) is still unclear. Methods: In this case-control study, we measured the concentration of the soluble fragment of TREM2 (sTREM2) in PD patients, evaluated their sleep conditions by the PD sleep scale (PDSS), and analyzed the relationship between sTREM2 and PD symptoms. Results: We recruited 80 sporadic PD patients and 65 healthy controls without disease-related variants in TREM2. The concentration of sTREM2 in the CSF was significantly higher in PD patients than in healthy controls (p < 0.01). In the PD group, the concentration of sTREM2 had a positive correlation with α-syn in the CSF (Pearson r = 0.248, p = 0.027). Receiver operating characteristic curve (ROC) analyses showed that sTREM2 in the CSF had a significant diagnostic value for PD (AUC, 0.791; 95% CI, 0.711-0.871, p < 0.05). The subgroup analysis showed that PD patients with sleep disorders had a significantly higher concentration of sTREM2 in their CSF (p < 0.01). The concentration of sTREM2 in the CSF had a negative correlation with the PDSS score in PD patients (Pearson r = -0.555, p < 0.01). The ROC analyses showed that sTREM2 in the CSF had a significant diagnostic value for sleep disorders in PD (AUC, 0.733; 95% CI, 0.619-0.846, p < 0.05). Conclusion: Our findings suggest that CSF sTREM2 may be a potential biomarker for PD and it could help predict sleep disorders in PD patients, but multicenter prospective studies with more participants are still needed to confirm its diagnostic value in future.

19.
Food Res Int ; 147: 110565, 2021 09.
Article in English | MEDLINE | ID: mdl-34399541

ABSTRACT

To improve the adsorption capacities and hypoglycemic properties of millet bran dietary fibre (MBDF), four methods including acrylate-grafting, carboxymethylation, heat assisted with cellulase hydrolysis, and enzymatic hydrolysis combined with acrylate-grafting were used. The results demonstrated that all carboxymethylation, acrylate-grafting, and enzymatic hydrolysis combined with acrylate-grafting improved soluble dietary fibre content, water swelling ability and α-amylase-inhibition activity of MBDF. They also increased oil, cholesterol, sodium cholate, copper ion and nitrite ion adsorption capacities of MBDF. But carboxymethylation, acrylate-grafting and enzymatic hydrolysis combined with acrylate-grafting decreased polyphenol content, glucose-binding ability and glucose dialysis retardation index of MBDF (p < 0.05). The heat assisted with cellulase hydrolysis increased soluble dietary fibre content, polyphenol content, sodium cholate-adsorption capacity, and hypoglycemic properties of MBDF including glucose-binding ability, glucose dialysis retardation index and α-amylase-inhibition activity; but reduced adsorption capacity of MBDF on cholesterol and copper ion (p < 0.05). Changes in structure of MBDF caused by these modification methods were proved by the results of scanning electron microscopy and Fourier-transformed infrared spectroscopy analysis. These results highlight potential applications of these modified MBDFs as ingredients of hypolipidemic and hypoglycemic foods, or scavenger of nitrite and copper ion.


Subject(s)
Hypoglycemic Agents , Millets , Adsorption , Dietary Fiber , Renal Dialysis
20.
Adv Sci (Weinh) ; 8(9): 2004555, 2021 05.
Article in English | MEDLINE | ID: mdl-33977069

ABSTRACT

Parkinson's disease (PD) is characterized by the progressive deterioration of dopamine (DA) neurons, and therapeutic endeavors are aimed at preventing DA loss. However, lack of effective brain delivery approaches limits this strategy. In this study, a "Trojan horse" system is used for substantia nigra-targeted delivery of a blood brain barrier-penetrating peptide (RVG29) conjugated to the surface of nanoparticles loaded with the natural autophagy inducer 4,4'-dimethoxychalcone (DMC) (designated as RVG-nDMC). Here, the neuroprotective effects of DMC are demonstrated in PD. Specifically, RVG-nDMC penetrates the blood brain barrier with enhanced brain-targeted delivery efficiency and is internalized by DA neurons and microglia. In vivo studies demonstrate that RVG-nDMC ameliorates motor deficits and nigral DA neuron death in PD mice without causing overt adverse effects in the brain or other major organs. Moreover, RVG-nDMC reverses tyrosine hydroxylase ubiquitination and degradation, alleviates oxidative stress in DA neurons, and exerts antiinflammatory effects in microglia. The "Trojan horse" strategy for targeted delivery of DMC thus provides a potentially powerful and clinically feasible approach for PD intervention.


Subject(s)
Chalcone/analogs & derivatives , Chalcone/administration & dosage , Drug Delivery Systems/methods , Neuroprotective Agents/administration & dosage , Parkinson Disease/drug therapy , Animals , Blood-Brain Barrier/metabolism , Chalcone/therapeutic use , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neuroprotective Agents/therapeutic use , Substantia Nigra/drug effects , Substantia Nigra/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...