Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 47(4): 1084-1098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037476

ABSTRACT

Beneficial Bacillus subtilis (BS) symbiosis could combat root pathogenesis, but it relies on root-secreted sugars. Understanding the molecular control of sugar flux during colonization would benefit biocontrol applications. The SWEET (Sugar Will Eventually Be Exported Transporter) uniporter regulates microbe-induced sugar secretion from roots; thus, its homologs may modulate sugar distribution upon BS colonization. Quantitative polymerase chain reaction revealed that gene transcripts of SWEET2, but not SWEET16 and 17, were significantly induced in seedling roots after 12 h of BS inoculation. Particularly, SWEET2-ß-glucuronidase fusion proteins accumulated in the apical mature zone where BS abundantly colonized. Yet, enhanced BS colonization in sweet2 mutant roots suggested a specific role for SWEET2 to constrain BS propagation, probably by limiting hexose secretion. By employing yeast one-hybrid screening and ectopic expression in Arabidopsis protoplasts, the transcription factor AHL29 was identified to function as a repressor of SWEET2 expression through the AT-hook motif. Repression occurred despite immunity signals. Additionally, enhanced SWEET2 expression and reduced colonies were specifically detected in roots of BS-colonized ahl29 mutant. Taken together, we propose that BS colonization may activate repression of AHL29 on SWEET2 transcription that would be enhanced by immunity signals, thereby maintaining adequate sugar secretion for a beneficial Bacillus association.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacillus subtilis/metabolism , Plant Roots/metabolism , Saccharomyces cerevisiae/metabolism , Sugars/metabolism
2.
J Plant Physiol ; 288: 154073, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37603910

ABSTRACT

Endogenous programs and constant interaction with the environment regulate the development of the plant organism and its individual organs. Sugars are necessary building blocks for plant and organ growth and at the same time act as critical integrators of the metabolic state into the developmental program. There is a growing recognition that the specific type of sugar and its subcellular or tissue distribution is sensed and translated to developmental responses. Therefore, the transport of sugars across membranes is a key process in adapting plant organ properties and overall development to the nutritional state of the plant. In this review, we discuss how plants exploit various sugar transporters to signal growth responses, for example, to control the development of sink organs such as roots or fruits. We highlight which sugar transporters are involved in root and shoot growth and branching, how intracellular sugar allocation can regulate senescence, and, for example, control fruit development. We link the important transport processes to downstream signaling cascades and elucidate the factors responsible for the integration of sugar signaling and plant hormone responses.


Subject(s)
Plant Development , Plant Growth Regulators , Fruit , Reproduction , Sugars
3.
Plant Physiol ; 189(1): 344-359, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35166824

ABSTRACT

Pollen fertility is critical for successful fertilization and, accordingly, for crop yield. While sugar unloading affects the growth and development of all types of sink organs, the molecular nature of sugar import to tomato (Solanum lycopersicum) pollen is poorly understood. However, sugar will eventually be exported transporters (SWEETs) have been proposed to be involved in pollen development. Here, reverse transcription-quantitative polymerase chain reaction (PCR) revealed that SlSWEET5b was markedly expressed in flowers when compared to the remaining tomato SlSWEETs, particularly in the stamens of maturing flower buds undergoing mitosis. Distinct accumulation of SlSWEET5b-ß-glucuronidase activities was present in mature flower buds, especially in anther vascular and inner cells, symplasmic isolated microspores (pollen grains), and styles. The demonstration that SlSWEET5b-GFP fusion proteins are located in the plasma membrane supports the idea that the SlSWEET5b carrier functions in apoplasmic sugar translocation during pollen maturation. This is consistent with data from yeast complementation experiments and radiotracer uptake, showing that SlSWEET5b operates as a low-affinity hexose-specific passive facilitator, with a Km of ∼36 mM. Most importantly, RNAi-mediated suppression of SlSWEET5b expression resulted in shrunken nucleus-less pollen cells, impaired germination, and low seed yield. Moreover, stamens from SlSWEET5b-silenced tomato mutants showed significantly lower amounts of sucrose (Suc) and increased invertase activity, indicating reduced carbon supply and perturbed Suc homeostasis in these tissues. Taken together, our findings reveal the essential role of SlSWEET5b in mediating apoplasmic hexose import into phloem unloading cells and into developing pollen cells to support pollen mitosis and maturation in tomato flowers.


Subject(s)
Solanum lycopersicum , Flowers/genetics , Flowers/metabolism , Hexoses/metabolism , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen , Sucrose/metabolism
4.
Plant Physiol ; 187(4): 2230-2245, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618023

ABSTRACT

Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and ß-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.


Subject(s)
Fruit/growth & development , Membrane Transport Proteins/metabolism , Phloem/metabolism , Seeds/growth & development , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Sucrose/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant , Membrane Transport Proteins/genetics , Phloem/genetics , Seeds/genetics
5.
Plant Cell Environ ; 44(1): 20-33, 2021 01.
Article in English | MEDLINE | ID: mdl-32583877

ABSTRACT

Gastrodia elata, a fully mycoheterotrophic orchid without photosynthetic ability, only grows symbiotically with the fungus Armillaria. The mechanism of carbon distribution in this mycoheterotrophy is unknown. We detected high sucrose concentrations in all stages of Gastrodia tubers, suggesting sucrose may be the major sugar transported between fungus and orchid. Thick symplasm-isolated wall interfaces in colonized and adjacent large cells implied involvement of sucrose importers. Two sucrose transporter (SUT)-like genes, GeSUT4 and GeSUT3, were identified that were highly expressed in young Armillaria-colonized tubers. Yeast complementation and isotope tracer experiments confirmed that GeSUT4 functioned as a high-affinity sucrose-specific proton-dependent importer. Plasma-membrane/tonoplast localization of GeSUT4-GFP fusions and high RNA expression of GeSUT4 in symbiotic and large cells indicated that GeSUT4 likely functions in active sucrose transport for intercellular allocation and intracellular homeostasis. Transgenic Arabidopsis overexpressing GeSUT4 had larger leaves but were sensitive to excess sucrose and roots were colonized with fewer mutualistic Bacillus, supporting the role of GeSUT4 in regulating sugar allocation. This is not only the first documented carbon import system in a mycoheterotrophic interaction but also highlights the evolutionary importance of sucrose transporters for regulation of carbon flow in all types of plant-microbe interactions.


Subject(s)
Gastrodia/metabolism , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Sucrose/metabolism , Symbiosis , Arabidopsis , Armillaria/metabolism , Armillaria/physiology , Gastrodia/microbiology , Gastrodia/physiology , In Situ Hybridization , Membrane Transport Proteins/physiology , Microscopy, Electron, Transmission , Mycorrhizae/metabolism , Mycorrhizae/ultrastructure , Plant Proteins/physiology , Plant Tubers/metabolism , Plant Tubers/microbiology , Plant Tubers/ultrastructure , Plants, Genetically Modified
6.
J Exp Bot ; 70(12): 3241-3254, 2019 06 28.
Article in English | MEDLINE | ID: mdl-30958535

ABSTRACT

Sugar allocation from source to sink (young) leaves, critical for plant development, relies on activities of plasma membrane sugar transporters. However, the key sugar unloading mechanism to sink leaves remains elusive. SWEET transporters mediate sugar efflux into reproductive sinks; therefore, they are promising candidates for sugar unloading during leaf growth. Transcripts of SlSWEET1a, belonging to clade I of the SWEET family, were markedly more abundant than those of all other 30 SlSWEET genes in young leaves of tomatoes. High expression of SlSWEET1a was also detected in reproductive sinks, such as flowers. SlSWEET1a was dominantly expressed in leaf unloading veins, and the green fluorescent protein (GFP) fusion protein was localized to the plasma membrane using Arabidopsis protoplasts, further implicating this carrier in sugar unloading. In addition, yeast growth assays and radiotracer uptake analyses further demonstrated that SlSWEET1a acted as a low-affinity (Km ~100 mM) glucose-specific carrier with a passive diffusion manner. Finally, virus-induced gene silencing of SlSWEET1a expression reduced hexose accumulation to ~50% in young leaves, with a parallel 2-fold increase in mature leaves. Thus, we propose a novel function for SlSWEET1a in the uptake of glucose into unloading cells as part of the sugar unloading mechanism in sink leaves of tomato.


Subject(s)
Glucose/metabolism , Plant Proteins/genetics , Solanum lycopersicum/genetics , Biological Transport , Solanum lycopersicum/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism
7.
Plant J ; 83(6): 1046-58, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26234706

ABSTRACT

Plant roots secrete a significant portion of their assimilated carbon into the rhizosphere. The putative sugar transporter SWEET2 is highly expressed in Arabidopsis roots. Expression patterns of SWEET2-ß-glucuronidase fusions confirmed that SWEET2 accumulates highly in root cells and thus may contribute to sugar secretion, specifically from epidermal cells of the root apex. SWEET2-green fluorescent protein fusions localized to the tonoplast, which engulfs the major sugar storage compartment. Functional analysis of SWEET2 activity in yeast showed low uptake activity for the glucose analog 2-deoxyglucose, consistent with a role in the transport of glucose across the tonoplast. Loss-of-function sweet2 mutants showed reduced tolerance to excess glucose, lower glucose accumulation in leaves, and 15-25% higher glucose-derived carbon efflux from roots, suggesting that SWEET2 has a role in preventing the loss of sugar from root tissue. SWEET2 root expression was induced more than 10-fold during Pythium infection. Importantly, sweet2 mutants were more susceptible to the oomycete, showing impaired growth after infection. We propose that root-expressed vacuolar SWEET2 modulates sugar secretion, possibly by reducing the availability of glucose sequestered in the vacuole, thereby limiting carbon loss to the rhizosphere. Moreover, the reduced availability of sugar in the rhizosphere due to SWEET2 activity contributes to resistance to Pythium.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Monosaccharide Transport Proteins/metabolism , Plant Diseases/microbiology , Plant Roots/metabolism , Pythium/pathogenicity , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Carbon Sequestration , Gene Expression Regulation, Plant , Glucose/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions , Monosaccharide Transport Proteins/genetics , Plant Leaves/metabolism , Plant Roots/microbiology , Plants, Genetically Modified , Vacuoles/metabolism
8.
New Phytol ; 202(3): 940-951, 2014 May.
Article in English | MEDLINE | ID: mdl-24635746

ABSTRACT

Most angiosperm genomes contain several genes encoding metallothionein (MT) proteins that can bind metals including copper (Cu) and zinc (Zn). Metallothionein genes are highly expressed under various conditions but there is limited information about their function. We have studied Arabidopsis mutants that are deficient in multiple MTs to learn about the functions of MTs in plants. T-DNA insertions were identified in four of the five Arabidopsis MT genes expressed in vegetative tissues. These were crossed to produce plants deficient in four MTs (mt1a/mt2a/mt2b/mt3). The concentration of Cu was lower in seeds but higher in old leaves of the quad-MT mutant compared to wild-type plants. Experiments with stable isotopes showed that Cu in seeds came from two sources: directly from roots and via remobilization from other organs. Mobilization of Cu out of senescing leaves was disrupted in MT-deficient plants. Tolerance to Cu, Zn and paraquat was unaffected by MT deficiency but these plants were slightly more sensitive to cadmium (Cd). The quad-MT mutant showed no change in resistance to a number of microbial pathogens, or in the progression of leaf senescence. Although these MTs are not required to complete the plant's life cycle, MTs are important for Cu homeostasis and distribution in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Copper/metabolism , Metallothionein/deficiency , Plant Leaves/metabolism , Seeds/metabolism , Alleles , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Chlorophyll/metabolism , DNA, Bacterial/genetics , Disease Resistance , Gene Expression Regulation, Plant , Metallothionein/genetics , Metallothionein/metabolism , Models, Biological , Mutagenesis, Insertional/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological/genetics
9.
Plant Physiol ; 164(2): 777-89, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24381066

ABSTRACT

Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-ß-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fructose/metabolism , Membrane Transport Proteins/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Vacuoles/metabolism , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport/genetics , Cold Temperature , Fructose/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Green Fluorescent Proteins/metabolism , Membrane Transport Proteins/genetics , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vacuoles/drug effects
10.
Plant Cell ; 23(12): 4234-40, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22186371

ABSTRACT

Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.


Subject(s)
Arabidopsis/physiology , Microfluidics/instrumentation , Plant Roots/growth & development , Arabidopsis/growth & development , Arabidopsis/metabolism , Carbohydrate Metabolism , Cellular Microenvironment , Culture Media/metabolism , Cytosol/metabolism , Dimethylpolysiloxanes/metabolism , Fluorescence , Galactose/metabolism , Glucose/metabolism , Image Processing, Computer-Assisted , Microfluidics/methods , Photoperiod , Plant Cells/metabolism , Plant Cells/physiology , Plant Roots/metabolism , Plant Roots/physiology , Signal Transduction , Time Factors , Time-Lapse Imaging/methods
11.
Nature ; 468(7323): 527-32, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21107422

ABSTRACT

Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucose/metabolism , Host-Pathogen Interactions/physiology , Membrane Transport Proteins/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Biological Transport/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , HEK293 Cells , Humans , Models, Biological , Oryza/genetics , Oryza/metabolism , Oryza/microbiology , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Xenopus/genetics
12.
Plant Physiol ; 147(4): 1710-22, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18583533

ABSTRACT

Plant HVA22 is a unique abscisic acid (ABA)/stress-induced protein first isolated from barley (Hordeum vulgare) aleurone cells. Its yeast homolog, Yop1p, functions in vesicular trafficking and in the endoplasmic reticulum (ER) network in vivo. To examine the roles of plant HVA22, barley HVA22 was ectopically expressed in barley aleurone cells. Overexpression of HVA22 proteins inhibited gibberellin (GA)-induced formation of large digestive vacuoles, which is an important aspect of GA-induced programmed cell death in aleurone cells. The effect of HVA22 was specific, because overexpression of green fluorescent protein or another ABA-induced protein, HVA1, did not lead to the same effect. HVA22 acts downstream of the transcription factor GAMyb, which activates programmed cell death and other GA-mediated processes. Moreover, expression of HVA22:green fluorescent protein fusion proteins showed network and punctate fluorescence patterns, which were colocalized with an ER marker, BiP:RFP, and a Golgi marker, ST:mRFP, respectively. In particular, the transmembrane domain 2 was critical for protein localization and stability. Ectopic expression of the most phylogenetically similar Arabidopsis (Arabidopsis thaliana) homolog, AtHVA22D, also resulted in the inhibition of vacuolation to a similar level as HVA22, indicating function conservation between barley HVA22 and some Arabidopsis homologs. Taken together, we show that HVA22 is an ER- and Golgi-localized protein capable of negatively regulating GA-mediated vacuolation/programmed cell death in barley aleurone cells. We propose that ABA induces the accumulation of HVA22 proteins to inhibit vesicular trafficking involved in nutrient mobilization to delay coalescence of protein storage vacuoles as part of its role in regulating seed germination and seedling growth.


Subject(s)
Abscisic Acid/pharmacology , Apoptosis/physiology , Gibberellins/pharmacology , Hordeum/physiology , Plant Growth Regulators/pharmacology , Plant Proteins/physiology , Arabidopsis Proteins/physiology , Endoplasmic Reticulum/chemistry , Golgi Apparatus/chemistry , Green Fluorescent Proteins/analysis , Hordeum/cytology , Hordeum/metabolism , Plant Proteins/analysis , Plant Proteins/chemistry , Protein Structure, Tertiary , Signal Transduction , Vacuoles/physiology
13.
Plant Physiol ; 146(4): 1697-706, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18287486

ABSTRACT

Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.


Subject(s)
Adaptation, Physiological , Arabidopsis/metabolism , Copper/metabolism , Metallothionein/metabolism , Arabidopsis/physiology , Base Sequence , DNA Primers
14.
J Exp Bot ; 55(408): 2483-93, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15448172

ABSTRACT

Expression of plant metallothionein genes has been reported in a variety of senescing tissues, such as leaves and stems, ripening fruits, and wounded tissues, and has been proposed to function in both metal chaperoning and scavenging of reactive oxygen species. In this work, it is shown that MT is also associated with suberization, after identifying a gene actively transcribed in Quercus suber cork cells as a novel MT. This cDNA, isolated from a phellem cDNA library, encodes a MT that belongs to type 2 plant MTs (QsMT). Expression of the QsMT cDNA in E. coli grown in media supplemented with Zn, Cd, or Cu has yielded recombinant QsMT. Characterization of the respective metal aggregates agrees well with a copper-related biological role, consistent with the capacity of QsMT to restore copper tolerance to a MT-deficient, copper-sensitive yeast mutant. Furthermore, in situ hybridization results demonstrate that RNA expression of QsMT is mainly observed under conditions related to oxidative stress, either endogenous, as found in cork or in actively proliferating tissues, or exogenous, for example, in response to H(2)O(2) or paraquat treatments. The putative role of QsMT in oxidative stress, both as a free radical scavenger via its sulphydryl groups or as a copper chelator is discussed.


Subject(s)
Metallothionein/metabolism , Oxidative Stress/physiology , Plant Proteins/metabolism , Quercus/metabolism , Amino Acid Sequence , Base Sequence , Copper/metabolism , Copper/toxicity , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Metallothionein/genetics , Molecular Sequence Data , Organisms, Genetically Modified , Phylogeny , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tissue Distribution/physiology
15.
J Biol Chem ; 279(25): 26098-104, 2004 Jun 18.
Article in English | MEDLINE | ID: mdl-15069083

ABSTRACT

Glutathione S-transferases (GSTs) are involved in many stress responses in plants, for example, participating in the detoxification of xenobiotics and limiting oxidative damage. Studies examining the regulation of this gene family in diverse plant species have focused primarily on RNA expression. A proteomics method was developed to identify GSTs expressed in Arabidopsis seedlings and to determine how the abundance of these proteins changed in response to copper, a promoter of oxidative stress, and benoxacor, a herbicide safener. Eight GSTs were identified in seedlings grown under control conditions, and only one, AtGSTU19, was induced by benoxacor. In contrast, four GSTs, AtGSTF2, AtGSTF6, AtGSTF7, and AtGSTU19, were significantly more abundant in copper-treated seedlings. The different responses to these treatments may reflect the potential for copper to affect many more aspects of plant growth and physiology compared with a herbicide safener. Differences between RNA and protein expression of GSTs indicate that both transcriptional and translational mechanisms are involved in regulation of GSTs under these conditions.


Subject(s)
Arabidopsis/enzymology , Copper/pharmacology , Glutathione Transferase/chemistry , Oxazines/pharmacology , Chromatography, High Pressure Liquid , Copper/chemistry , Copper/metabolism , Glutathione Transferase/metabolism , Immunoblotting , Mass Spectrometry , Oxidative Stress , Peptides/chemistry , Protein Binding , Proteome , Proteomics/methods , RNA/chemistry , RNA/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seeds/metabolism , Trypsin/pharmacology , Xenobiotics/pharmacology
16.
New Phytol ; 159(2): 369-381, 2003 Aug.
Article in English | MEDLINE | ID: mdl-33873353

ABSTRACT

• Expression and regulation of Arabidopsis metallothionein (MT) genes were investigated to examine the functions of MTs in plants. • To examine the tissue-specific expression of MT genes, GUS reporter gene activity driven by promoters of MT1a, MT2a, MT2b and MT3 was analysed in transgenic plants. • MT1a and MT2b are expressed in the phloem of all organs and are copper (Cu)-inducible; MT2a and MT3, by contrast, are expressed predominantly in mesophyll cells and are also induced by Cu in young leaves and at root tips. Expression of MT genes is highly induced by Cu in trichomes and increases during senescence. Expression of MT4 genes is restricted to seeds. • We propose that plant MTs have distinct functions in heavy metal homeostasis, especially for Cu: MT1a and MT2b are involved in the distribution of Cu via the phloem, while MT2a and MT3 chaperone excess metals in mesophyll cells and root tips. These functional capabilities may allow MTs to play a role in mobilization of metal ions from senescing leaves and the sequestration of excess metal ions in trichomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...