Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 237: 122896, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34736712

ABSTRACT

Noroviruses are the leading cause of acute gastroenteritis and food-borne diseases worldwide. Thus, a rapid, accurate, and easy-to-implement detection method for controlling infection and monitoring progression is urgently needed. In this study, we constructed a novel sandwich-type electrochemical biosensor integrated with two specific recognition elements (aptamer and peptide) for human norovirus (HuNoV). The electrochemical biosensor was fabricated using magnetic covalent organic framework/pillararene heterosupramolecular nanocomposites (MB@Apt@WP5A@Au@COF@Fe3O4) as the signal probes. The sensor showed high accuracy and selectivity. The detection method does not need the extraction and amplification of virus nucleic acid and has a short turn-around time. Intriguingly, the proposed biosensor had a limit of detection of 0.84 copy mL-1 for HuNoV, which was the highest sensitivity among published assays. The proposed biosensor showed higher sensitivity and accuracy compared with immunochromatographic assay in the detection of 98 clinical specimens. The biosensor was capable of determining the predominant infection strain of GII.4 and also GII.3 and achieved 74% selectivity for HuNoV GII group. This study provides a potential method for point-of-care testing and highlights the integrated utilization of Apt and peptide in sensor construction.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Nanocomposites , Norovirus , Humans , Immunoassay
2.
AMB Express ; 7(1): 113, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28582972

ABSTRACT

The interactions between environmental factors and bacterial community shift in solid-phase denitrification are crucial for optimum operation of a reactor and to achieve maximum treatment efficiency. In this study, Illumina high-throughput sequencing was applied to reveal the effects of different operational conditions on bacterial community distribution of three continuous operated poly(butylene succinate) biological denitrification reactors used for recirculating aquaculture system (RAS) wastewater treatment. The results indicated that salinity decreased OTU numbers and diversity while dissolved oxygen (DO) had no obvious influence on OTU numbers. Significant microbial community composition differences were observed among and between three denitrification reactors under varied operation conditions. This result was also demonstrated by cluster analysis (CA) and detrended correspondence analysis (DCA). Hierarchical clustering and redundancy analysis (RDA) was performed to test the relationship between environmental factors and bacterial community compositions and result indicated that salinity, DO and hydraulic retention time (HRT) were the three key factors in microbial community formation. Besides, Simplicispira was detected under all operational conditions, which worth drawing more attention for nitrate removal. Moreover, the abundance of nosZ gene and 16S rRNA were analyzed by real-time PCR, which suggested that salinity decreased the proportion of denitrifiers among whole bacterial community while DO had little influence on marine reactors. This study provides an overview of microbial community shift dynamics in solid-phase denitrification reactors when operation parameters changed and proved the feasibility to apply interval aeration for denitrification process based on microbial level, which may shed light on improving the performance of RAS treatment units.

3.
Bioresour Technol ; 216: 1004-13, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27343453

ABSTRACT

In this study, an airlift inner-loop sequencing batch reactor using poly(butylene succinate) as the biofilm carrier and carbon source was operated under an alternant aerobic/anoxic strategy for nitrogen removal in recirculating aquaculture system. The average TAN and nitrate removal rates of 47.35±15.62gNH4-Nm(-3)d(-1) and 0.64±0.14kgNO3-Nm(-3)d(-1) were achieved with no obvious nitrite accumulation (0.70±0.76mg/L) and the dissolved organic carbon in effluents was maintained at 148.38±39.06mg/L. Besides, the activities of dissimilatory nitrate reduction to ammonium and sulfate reduction activities were successfully inhibited. The proteome KEGG analysis illustrated that ammonia might be removed through heterotrophic nitrification, while the activities of nitrate and nitrite reductases were enhanced through aeration treatment. The microbial community analysis revealed that denitrifiers of Azoarcus and Simplicispira occupied the dominate abundance which accounted for the high nitrate removal performance. Overall, this study broadened our understanding of simultaneous nitrification and denitrification using biodegradable material as biofilm carrier.


Subject(s)
Ammonia , Biofilms , Bioreactors , Butylene Glycols/chemistry , Nitrates , Polymers/chemistry , Ammonia/analysis , Ammonia/chemistry , Ammonia/isolation & purification , Ammonia/metabolism , Denitrification , Nitrates/analysis , Nitrates/chemistry , Nitrates/isolation & purification , Nitrates/metabolism , Nitrification
4.
Bioresour Technol ; 192: 603-10, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26093254

ABSTRACT

Nitrate removal is essential for the sustainable operation of recirculating aquaculture system (RAS). This study evaluated the heterotrophic denitrification using poly(butylene succinate) as carbon source and biofilm carrier for RAS wastewater treatment. The effect of varied operational conditions (influent type, salinity and nitrate loading) on reactor performance and microbial community was investigated. The high denitrification rates of 0.53 ± 0.19 kg NO3(-)-N m(-3) d(-1) (salinity, 0‰) and 0.66 ± 0.12 kg NO3(-)-Nm(-3) d(-1) (salinity, 25‰) were achieved, and nitrite concentration was maintained below 1mg/L. In addition, the existence of salinity exhibited more stable nitrate removal efficiency, but caused adverse effects such as excessive effluent dissolved organic carbon (DOC) and dissimilation nitrate reduce to ammonia (DNRA) activity. The degradation of PBS was further confirmed by SEM and FTIR analysis. Illumina sequencing revealed the abundance and species changes of functional denitrification and degradation microflora which might be the primary cause of varied reactor performance.


Subject(s)
Aquaculture/instrumentation , Bioreactors/microbiology , Butylene Glycols/metabolism , Nitrates/metabolism , Polymers/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biofilms/growth & development , Equipment Design , Equipment Failure Analysis , Industrial Waste/prevention & control , Nitrates/isolation & purification , Nitrogen , Wastewater/microbiology , Water Pollutants, Chemical/isolation & purification
5.
Sensors (Basel) ; 13(10): 13063-75, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24077322

ABSTRACT

In this study, reduced graphene oxide (rGO) was electrochemically deposited on the surface of screen-printed carbon electrodes (SPCE) to prepare a disposable sensor for fast detection of Pb2+ in foods. The SEM images showed that the rGO was homogeneously deposited onto the electrode surface with a wrinkled nanostructure, which provided 2D bridges for electron transport and a larger active area for Pb2+ adsorption. Results showed that rGO modification enhanced the activity of the electrode surface, and significantly improved the electrochemical properties of SPCE. The rGO modified SPCE (rGO-SPCE) was applied to detect Pb2+ in standard aqueous solution, showing a sharp stripping peak and a relatively constant peak potential in square wave anodic stripping voltammetry (SWASV). The linear range for Pb2+ detection was 5~200 ppb (R2 = 0.9923) with a low detection limit of 1 ppb (S/N = 3). The interference of Cd2+ and Cu2+ at low concentrations was effectively avoided. Finally, the rGO-SPCE was used for determination of lead in real tap water, juice, preserved eggs and tea samples. Compared with results from graphite furnace atomic absorption spectroscopy (GFAAS), the results based on rGO-SPCE were both accurate and reliable, suggesting that the disposable sensor has great potential in application for fast, sensitive and low-cost detection of Pb2+ in foods.


Subject(s)
Conductometry/instrumentation , Disposable Equipment , Electrodes , Food Analysis/instrumentation , Food Contamination/analysis , Graphite/chemistry , Lead/analysis , Equipment Design , Equipment Failure Analysis , Oxidation-Reduction , Oxides/chemistry , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...