Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 58(63): 8866-8869, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35856683

ABSTRACT

The effects of a series of MOFs on the adsorption and separation of lithium isotopes were investigated in this paper. Seven kinds of MOF were prepared, and the characterization studies of MIL-100(Fe) before and after adsorption by X-ray photoelectron spectroscopy (XPS) demonstrated the potential chemical interaction between Fe and Li. The influence of metal ions, counter-ions and solvents on the adsorption capacity and separation factor was investigated. The maximum separation factor can reach 1.048 ± 0.001. MIL-100(Fe) also has good regeneration performance.

2.
ACS Appl Mater Interfaces ; 13(40): 47793-47799, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34596388

ABSTRACT

The continuously developing lithium battery market makes seeking a reliable lithium supply a top priority for technology companies. Although metal-organic frameworks have been extensively researched as adsorbents owing to their exceptional properties, lithium adsorption has been scarcely investigated. Herein, we prepared a novel cuboid rod-shaped three-dimensional framework termed TJU-21 composed of fluorine-pillared coordination layers of Fe-O inorganic chains and benzene-1,3,5-tricarboxylate (BTC) linkages. Besides thermal and chemical robustness, a remarkably high lithium uptake of about 41 mg·g-1 was observed on TJU-21 as a fast-spontaneous endothermic process. Single-crystal X-ray diffraction demonstrated that the adsorbed lithium was located in the cavity symmetrically assembled by iron sites and organic ligands between adjacent layers, while another kind of cavity in the framework circled by Fe-O-Fe-O-Fe-O-Fe chains and shared BTC linkages was occupied by hydrogen-bonded water molecules. Lithium adsorption resulted in decreased curviness of the coordination layers, and the binding energy change at O 1s as well as the increased Fe 2p peak, suggested potential interaction with iron sites. The practicability of TJU-21 as a lithium adsorbent was further proved by the considerable capacity and selectivity in simulated salt brines with excellent reusability.

3.
Chem Commun (Camb) ; 56(83): 12586-12588, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32945298

ABSTRACT

A dense zeolite layer with a thickness of approximately 500 nm was demonstrated by a confined-space strategy in a sandwiched mode of (SiO2)/(silicalite-1)/(SiO2). The gel-free secondary growth methodology bypasses the post-calcination step, avoiding excess energy consumption and possible film damage. Significantly enhanced pervaporation separation was observed with separation factors of 136 and 113, and fluxes of 2.3 and 2.2 kg m-2 h-1 for ethanol/n-butanol aqueous solutions, respectively. In addition, the membrane stability was confirmed by the 14 day pervaporation test.

4.
J Am Chem Soc ; 142(10): 4609-4615, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32069051

ABSTRACT

Zr6-based metal-organic frameworks (MOFs) with tetratopic organic linkers have been extensively investigated owing to their versatile structural tunability. While diverse topologies and polymorphism in the resulting MOFs are often encountered with tetratopic linkers and Zr6 nodes, reports on phase transitions within these systems are rare. Thus, we have a limited understanding of polymorph transformations, hindering the rational development of pure phase materials. In this study, a phase transition from a microporous MOF, scu-NU-906, to a mesoporous MOF, csq-NU-1008, was discovered and monitored through in situ variable temperature liquid-cell transmission electron microscopy (VT-LCTEM), high-resolution transmission electron microscopy (HRTEM), and in situ variable temperature powder X-ray diffraction (VT-PXRD). It was found that the microporous- to-mesoporous transformation in the presence of formic acid occurs via a concomitant dissolution-reprecipitation process.

5.
ACS Appl Mater Interfaces ; 11(45): 42179-42185, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31638371

ABSTRACT

The last decade has witnessed significant advances in the scale-up synthesis of metal-organic frameworks (MOFs) using commercially available and affordable organic linkers. However, the synthesis of MOFs using elongated and/or multitopic linkers to access MOFs with large pore volume and/or various topologies can often be challenging due to multistep organic syntheses involved for linker preparation. In this report, a modular MOF synthesis strategy is developed by utilizing the coordination and covalent bonds formation in one-pot strategy where monoacid-based ligands reacted to form ditopic ligands, which then assembled into a three-dimensional MOF with Zr6 clusters. Chemical stability of the resulting materials was significantly enhanced through converting the imine bond into robust linkage via cycloaddition with phenylacetylene. Oxygen storage capacities of the MOFs were measured, and enhanced volumetric O2 uptake was observed for the stabilized MOF, NU-401-Q.

6.
Chem Sci ; 10(4): 1186-1192, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30774917

ABSTRACT

Tetratopic organic linkers have been extensively used in Zr-based metal-organic frameworks (MOFs) where diverse topologies have been observed. Achieving meticulous control over the topologies to tune the pore sizes and shapes of the resulting materials, however, remains a great challenge. Herein, by introducing substituents to the backbone of tetratopic linkers to affect the linker conformation, phase-pure Zr-MOFs with different topologies and porosity were successfully obtained under the same synthetic conditions. The conversion of CO2 to valuable cyclic carbonates is a promising route for the mitigation of the greenhouse gas. Owing to the presence of substrate accessible Lewis acidic Zr(iv) sites in the 8-connected Zr6 nodes, the Zr-MOFs in this study have been investigated as heterogenous acid catalysts for CO2 cycloaddition to styrene oxide. The MOFs exhibited drastically different catalytic activities depending on their distinct pore structures. Compared to previously reported MOF materials, a superior catalytic activity was observed with the mesoporous NU-1008, giving an almost 100% conversion under mild conditions.

8.
Angew Chem Int Ed Engl ; 55(25): 7184-7, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27101318

ABSTRACT

Two-dimensional zeolite nanosheets that do not contain any organic structure-directing agents were prepared from a multilamellar MFI (ML-MFI) zeolite. ML-MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H2 SO4 and H2 O2 (piranha solution). The obtained OSDA-free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n-butane/isobutane selectivity of 5.4, with an n-butane permeance of 3.5×10(-7)  mol m(-2) s(-1) Pa(-1) (ca. 1000 GPU).

SELECTION OF CITATIONS
SEARCH DETAIL
...